Skip to main content
Log in

High performance of molecularly imprinted polymer for the selective adsorption of erythromycin in water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, a high adsorption performance of erythromycin molecularly imprinted polymer (ERY@MIP) was prepared by bulk polymerization. Scanning electron microscope, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the morphology and structure of imprinted polymers. The maximum adsorption capacity of ERY@MIP for ERY was 1048.8 mg g−1; it also has good selectivity compare with other antibiotics. Further, the thermodynamic and kinetic analysis shows that the experiment results accord with the Langmuir model and the quasi-second-order kinetic model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li J, Ji F, Ng DHL, Liu J, Bing X, Wang P (2019) Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chem Eng J 369:611–620

    CAS  Google Scholar 

  2. Saha S, Savage PB, Bal M (2008) Enhancement of the efficacy of erythromycin in multiple antibiotic-resistant gram-negative bacterial pathogens. J Appl Microbiol 105:822–828

    CAS  PubMed  Google Scholar 

  3. Jaglic Z, Vlkova H, Bardon J, Michu E, Cervinkova D, Babak V (2012) Distribution, characterization and genetic bases of erythromycin resistance in staphylococci and enterococci originating from livestock. Zoonoses Public Hlth 59:202–211

    CAS  Google Scholar 

  4. Hoy SR, Vucetich JA, Liu R, DeAngelis DL, Peterson RO, Vucetich LM, Henderson JJ (2019) Negative frequency‐dependent foraging behaviour in a generalist herbivore (Alces alces) and its stabilizing influence on food web dynamics. J Anim Ecol 88:1291–1304

    PubMed  Google Scholar 

  5. Jafari S (2012). Int J Dairy Technol 70:1–10

    Google Scholar 

  6. Scott HM, Acuff G, Bergeron G, Bourassa MW, Gill J, Graham DW, Kahn LH, Morley PS, Salois MJ, Simjee S, Singer RS, Smith TC, Storrs C, Wittum TE (2019) Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Ann N Y Acad Sci 1441:8–16

    PubMed  PubMed Central  Google Scholar 

  7. Di Salvo A, Rocca G, Cagnardi P, Pellegrino RM (2013) Pharmacokinetics and residue depletion of erythromycin in rainbow trout Oncorhynchus mykiss (Walbaum). J Fish Dis 36:1021–1029

    PubMed  Google Scholar 

  8. Zhao L, Cao W, Xue X, Wang M, Wu L, Yu L (2017) Occurrence of erythromycin and its degradation products residues in honey. Validation of an analytical method. J Sep Sci 40:1353–1360

    CAS  PubMed  Google Scholar 

  9. Naik KM, Nandibewoor ST (2016) Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multispectroscopic methods. Luminescence 31:433–441

    CAS  PubMed  Google Scholar 

  10. Bhushan R, Gupta D (2005) Thin-layer chromatography separation of enantiomers of verapamil using macrocyclic antibiotic as a chiral selector. Biomed Chromatogr 19:474–478

    CAS  PubMed  Google Scholar 

  11. Kucherenko E, Kanateva A, Kurganov A, Borisov R, Pirogov A (2018) Monolithic thin‐layer chromatography plates with covalently bonded matrix for hyphenation with matrix‐assisted laser desorption/ionization. J Sep Sci 41:4387–4393

    CAS  PubMed  Google Scholar 

  12. Luiz DB, Genena AK, Virmond E, José HJ, Moreira RFPM, Gebhardt W, Schröder HF (2010) Identification of degradation products of erythromycin A arising from ozone and advanced oxidation process treatment. Water Environ Res 82:797–805

    CAS  PubMed  Google Scholar 

  13. Cai Z, Deng X, Wang Q, Lai J, Xie H, Chen Y, Huang B, Lin G (2020) Core-shell granular activated carbon and its adsorption of trypan blue. J Clean Prod 242:118496

    CAS  Google Scholar 

  14. Ghaemi M, Absalan G, Sheikhian L (2014) Adsorption characteristics of Titan yellow and Congo red on CoFe2O4 magnetic nanoparticles. J Iran Chem Soc 11:1759–1766

    CAS  Google Scholar 

  15. Sabah E, Çelik MS (2005) Sepiolite: An effective bleaching adsorbent for the physical refining of degummed rapeseed oil. J Am Oil Chem Soc 82:911–916

    CAS  Google Scholar 

  16. Lu L, Samarasekera C, Yeow JTW (2015). J Appl Polym Sci 132:1–8

    Google Scholar 

  17. Al-Damkhi AM, Al-Ameeri RS, Jeffreys GV, Mumford CJ (1987). J Chem TechnolL Biot 37:215–228

    CAS  Google Scholar 

  18. Chi X, Tang Y, Zeng X (2016) Electrode reactions coupled with chemical reactions of oxygen, water and acetaldehyde in an ionic liquid: new approaches for sensing volatile organic compounds. Electrochim Acta 216:171–180

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Streifel BC, Lundin JG, Sanders AM et al (2018). Macromol Biosci 18:1–10

    Google Scholar 

  20. Xu T, Shehzad MA, Wang X, Wu B, Ge L, Xu T (2020) Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Letters 12:51–63

    Google Scholar 

  21. Hong YQ, Guo X, Chen GH et al (2018). J Food Safety 38:1–7

    Google Scholar 

  22. Pleasance S, Kelly J, LeBlanc MD et al (1992) Determination of erythromycin A in salmon tissue by liquid chromatography with ionspray mass spectrometry. Bio Mass Spectrom 21:675–687

    CAS  Google Scholar 

  23. Zhu Y, Jiang D, Sun D, Yan Y, Li C (2016) Fabrication of magnetic imprinted sorbents prepared by Pickering emulsion polymerization for adsorption of erythromycin from aqueous solution. J Environ Chem Eng 4:3570–3579

    CAS  Google Scholar 

  24. Farajzadeh MA, Dehghani H, Yadeghari A, Khoshmaram L (2017). Biomed Chromatogr 31:1–9

    Google Scholar 

  25. Garcia R, Carreiro EP, Nunes J, da Silva MG, Freitas AMC, Burke AJ, Cabrita MJ (2016) Dual-layer solid-phase extraction based on molecular imprinting technology: Seeking a route to enhance selectivity for trace analysis of pesticide residues in olive oil. Electrophoresis 37:1916–1922

    CAS  PubMed  Google Scholar 

  26. Prasad BB, Tiwari MP (2012) Biomed mater 339–391

  27. Madhuri R, Roy E, Gupta K, Sharma PK (2014). Adv Biosens Bioelectron 9781118773:367–422

    Google Scholar 

  28. O’Shannessy DJ, Andersson LI, Mosbach K (1989) Molecular recognition in synthetic polymers. Enantiomeric resolution of amide derivatives of amino acids on molecularly imprinted polymers. J Mol Recognit 2:1–5

    PubMed  Google Scholar 

  29. Bodbodak S, Hesari J, Peighambardoust SH, Mahkam M (2018) Selective decontamination of aflatoxin M1in milk by molecularly imprinted polymer coated on the surface of stainless steel plate. Int J Dairy Techeol 71:868–878

    CAS  Google Scholar 

  30. Liu J, Li L, Tang H et al (2015). J Sep Sci 8:3103–3109

    Google Scholar 

  31. Song B, Zhou Y, Jin H, Jing T, Zhou T, Hao Q, Zhou Y, Mei S, Lee YI (2014) Selective and sensitive determination of erythromycin in honey and dairy products by molecularly imprinted polymers based electrochemical sensor. Microchem J 116:183–190

    CAS  Google Scholar 

  32. Geng L, Kou X, Lei J, Su H, Ma G, Su Z (2012) Preparation, characterization and adsorption performance of molecularly imprinted microspheres for erythromycin using suspension polymerization. J Chem Technol Biot 87:635–642

    CAS  Google Scholar 

  33. Committee of National Pharmacopoeia, Pharmacopoeia of P.R. China (2015) M China Medical Science Press

  34. Mollym W, Albert FC, Daniel WA (2007). J Chirality 19:179–183

    Google Scholar 

  35. Li H, Xie C, Fu X (2013) Electrochemiluminescence sensor for sulfonylurea herbicide with molecular imprinting core–shell nanoparticles/chitosan composite film modified glassy carbon electrode. Sensor Actuat B-Chem 181:858–866

    CAS  Google Scholar 

  36. Wu N, Luo Z, Ge Y, Guo P, du K, Tang W, du W, Zeng A, Chang C, Fu Q (2016) A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J Pharm Anal 6:157–164

    PubMed  PubMed Central  Google Scholar 

  37. Zu B, Zhang Y, Guo X, Zhang H (2010) Preparation of molecularly imprinted polymers via atom transfer radical â bulkâ polymerization. J Pol Ym Sci Pol Chem 48:532–541

    CAS  Google Scholar 

  38. Allen RC, Stephens JT (2011) Reduced-oxidized difference spectral analysis and chemiluminescence-based Scatchard analysis demonstrate selective binding of myeloperoxidase to microbes. J Luminescence 26:208–213

    CAS  Google Scholar 

  39. Li DP, Zhang YR, Zhao XX, Zhao BX (2013) Magnetic nanoparticles coated by aminoguanidine for selective adsorption of acid dyes from aqueous solution. Chem Eng J 232:425–433

    CAS  Google Scholar 

  40. Ying X, Kang A, Zhu X, Li X (2019). J Appl Polym Sci 136:1–10

    Google Scholar 

  41. Jadda R, Madhumanchi S, Suedee R (2019). J Sep Sci 42:3599–3738

    Google Scholar 

  42. Huang Z, Zhang P, Yun Y (2017) Preparing molecularly imprinted membranes by phase inversion to separate kaempferol. J Polym Advan Technol 28:373–378

    CAS  Google Scholar 

  43. Xu M, Chai J, Hu N, Huang D, Wang Y, Huang X, Wei H, Yang Z, Zhang Y (2014) Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions. Nanotechnology 25:395602–395612

    PubMed  Google Scholar 

  44. Zhang R, Zhang J, Zhang X, Dou C, Han R (2014) Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study. J Taiwan Inst Chem E 45:2578–2583

    CAS  Google Scholar 

  45. Huang Z, Zhang Z, Xia Q et al (2017). J Appl Pol Ym Sci 134:1–7

    Google Scholar 

  46. Ye Y, Zhao Y, Ni L, Jiang K, Tong G, Zhao Y, Teng B (2016) Facile synthesis of unique NiO nanostructures for efficiently catalytic conversion of CH4 at low temperature. Appl Surf Sci 362:20–27

    CAS  Google Scholar 

  47. Long J, Liang B, Li S, Chen ZB (2017) Preparation and characterization of a novel molecularly imprinted polymer for the separation of glycyrrhizic acid. J Sep Sci 40:4847–4856

    CAS  PubMed  Google Scholar 

  48. Zhang F, Lan J, Yang Y, Wei T, Tan R, Song W (2013) Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. J Nanopart Res 15:2034–2044

    Google Scholar 

  49. Lee YC, Kim JY, Shin HJ (2013) Removal of malachite green (MG) from aqueous solutions by adsorption, precipitation, and alkaline fading using Talc. Sep Sci Technol 48:1093–1101

    CAS  Google Scholar 

  50. Li C, Ma X, Zhang X, Wang R, Li X, Liu Q (2017) Preparation of magnetic molecularly imprinted polymer nanoparticles by surface imprinting by a sol-gel process for the selective and rapid removal of di-(2-ethylhexyl) phthalate from aqueous solution. J Sep Sci 40:1621–1628

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Innovation Fund of Small and Medium-sized Enterprises of Gansu province (Grant No. 1407GCCA013) and the Key Technology and Industrial Application Demonstration Project of High Quality and High Purity Nano Calcium Carbonate of Guangxi province (Grant No. 17202030-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqian Han or Nong Wang.

Ethics declarations

Conflict of interest

There authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Han, X. & Wang, N. High performance of molecularly imprinted polymer for the selective adsorption of erythromycin in water. Colloid Polym Sci 298, 1023–1033 (2020). https://doi.org/10.1007/s00396-020-04660-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04660-1

Keywords

Navigation