Skip to main content
Log in

Existence of varifold minimizers for the multiphase Canham–Helfrich functional

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We address the minimization of the Canham–Helfrich functional in presence of multiple phases. The problem is inspired by the modelization of heterogeneous biological membranes, which may feature variable bending rigidities and spontaneous curvatures. With respect to previous contributions, no symmetry of the minimizers is here assumed. Correspondingly, the problem is reformulated and solved in the weaker frame of oriented curvature varifolds. We present a lower semicontinuity result and prove existence of single- and multiphase minimizers under area and enclosed-volume constrains. Additionally, we discuss regularity of minimizers and establish lower and upper diameter bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 2(95), 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  4. Barrett, J.W., Garcke, H., Nürnberg, R.: Finite element approximation for the dynamics of fluidic two-phase biomembranes. ESAIM Math. Model. Numer. Anal. 51(6), 2319–2366 (2017)

    Article  MathSciNet  Google Scholar 

  5. Barrett, J.W., Garcke, H., Nürnberg, R.: Gradient flow dynamics of two-phase biomembranes: sharp interface variational formulation and finite element approximation. SMAI J. Comput. Math. 4, 151–195 (2018)

    Article  MathSciNet  Google Scholar 

  6. Baumgart, T., Hess, S.T., Webb, W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  Google Scholar 

  7. Bellettini, G., Mugnai, L.: Approximation of Helfrich’s functional via diffuse interfaces. SIAM J. Math. Anal. 42(6), 2402–2433 (2010)

    Article  MathSciNet  Google Scholar 

  8. Boal, D.: Mechanics of the Cell. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. Bogachev, V.: Measure Theory, vol. II. Springer, Berlin (2007)

    Book  Google Scholar 

  10. Canham, P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 61–80 (1970)

    Article  Google Scholar 

  11. Choksi, R., Veneroni, M.: Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. 48(3–4), 337–366 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Choksi, R., Morandotti, M., Veneroni, M.: Global minimizers for axisymmetric multiphase membranes. ESAIM Control Optim. Calc. Var. 19(4), 1014–1029 (2013)

    Article  MathSciNet  Google Scholar 

  13. Delladio, S.: Special generalized Gauss graphs and their application to minimization of functionals involving curvatures. J. Reine Angew. Math. 486, 17–43 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Dondl, P.W., Wojtowytsch, S.J.: Uniform regularity and convergence of phase-fields for Willmore’s energy. Calc. Var. Partial Differ. Equ. 56(4), 22 (2017)

    Article  MathSciNet  Google Scholar 

  15. Eichmann, S.: The Helfrich boundary value problem. Calc. Var. Partial Differ. Equ. 58(1), 26 (2019)

    Article  MathSciNet  Google Scholar 

  16. Eichmann, S.: Lower-semicontinuity for the Helfrich problem (2019). arXiv:1908.11738v1

  17. Große-Brauckmann, K.: New surfaces of constant mean curvature. Math. Z. 214(4), 527–565 (1993)

    Article  MathSciNet  Google Scholar 

  18. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsc. C 28(11–12), 693–703 (1973)

    Article  Google Scholar 

  19. Helmers, M.: Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. 48(1–2), 211–242 (2013)

    Article  MathSciNet  Google Scholar 

  20. Helmers, M.: Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Q. J. Math. 66(1), 143–170 (2015)

    Article  MathSciNet  Google Scholar 

  21. Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35(1), 45–71 (1986)

    Article  MathSciNet  Google Scholar 

  22. Jülicher, F., Lipowsky, R.: Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53(3), 2670–2683 (1996)

    Article  Google Scholar 

  23. Kuwert, E., Schätzle, R.: The Willmore functional. In: Topics in Modern Regularity Theory, CRM Series, vol. 13, pp. 1–115, Ed. Norm., Pisa (2012)

  24. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MathSciNet  Google Scholar 

  25. Lussardi, L., Röger, M.: Gamma convergence of a family of surface-director bending energies with small tilt. Arch. Ration. Mech. Anal. 219, 985–1016 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lussardi, L., Peletier, M.A., Röger, M.: Variational analysis of a mesoscale model for bilayer membranes. J. Fixed Point Theory Appl. 15, 217–240 (2014)

    Article  MathSciNet  Google Scholar 

  27. Lussardi, L.: The Canham-Helfrich model for the elasticity of biomembranes as a limit of mesoscopic energies. To appear on Proceedings of the XXI International Conference on Geometry, Integrability and Quantization held in Varna, Bulgaria, 3–8 June 2019

  28. Mantegazza, C.: Curvature varifolds with boundary. J. Differ. Geom. 43(4), 807–843 (1996)

    Article  MathSciNet  Google Scholar 

  29. McMahon, H.T., Gallop, J.L.: Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005)

    Article  Google Scholar 

  30. Menne, U.: Second order rectifiability of integral varifolds of locally bounded first variation. J. Geom. Anal. 23(2), 709–763 (2013)

    Article  MathSciNet  Google Scholar 

  31. Mondino, A., Scharrer, C.: Existence and regularity of spheres minimising the Canham-Helfrich energy. Arch. Ration. Mech. Anal. 236(3), 1455–1485 (2020)

    Article  MathSciNet  Google Scholar 

  32. Müller, S., Röger, M.: Confined structures of least bending energy. J. Differ. Geom. 97(1), 109–139 (2014)

    Article  MathSciNet  Google Scholar 

  33. Novaga, M., Pozzetta, M.: Connected surfaces with boundary minimizing the Willmore energy. arXiv:1910.00873v1 (2019)

  34. Peletier, M.A., Röger, M.: Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193, 475–537 (2009)

    Article  MathSciNet  Google Scholar 

  35. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174, 1–45 (2008)

    Article  MathSciNet  Google Scholar 

  36. Schygulla, J.: Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203(3), 901–941 (2012)

    Article  MathSciNet  Google Scholar 

  37. Simon, L.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University, Canberra (1983)

    MATH  Google Scholar 

  38. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)

    Article  MathSciNet  Google Scholar 

  39. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175(4023), 720–731 (1972)

    Article  Google Scholar 

  40. Topping, P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503, 47–61 (1998)

    Article  MathSciNet  Google Scholar 

  41. Wojtowytsch, S.J.: Phase-Field Models for Thin Elastic Structures. PhD thesis, Durham University, (2017)

  42. Wojtowytsch, S.J.: Helfrich’s energy and constrained minimisation. Commun. Math. Sci. 15(8), 2373–2386 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge some valuable comments by Sascha Eichmann on a former version of the paper. Luca Lussardi is grateful to the kind hospitality of the University of Vienna where part of the work was performed. This work has been partially supported by the Vienna Science and Technology Fund (WWTF) through the Project MA14-009 and by the Austrian Science Fund (FWF) Projects F 65 and W 1245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulisse Stefanelli.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazda, K., Lussardi, L. & Stefanelli, U. Existence of varifold minimizers for the multiphase Canham–Helfrich functional. Calc. Var. 59, 93 (2020). https://doi.org/10.1007/s00526-020-01759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01759-9

Keywords

Mathematics Subject Classification

Navigation