Skip to main content
Log in

Differential transmission of phytoplasma and spiroplasma to maize caused by variation in the environmental temperature in Brazil

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The effects of temperature in winter-spring (average 17.0 °C) and spring-summer (average 23.0 °C) seasons on the transmission and latent period of maize bushy stunt phytoplasma (MBS-phytoplasma) and corn stunt spiroplasma (CSS) (Spiroplasma kunkelii) caused by the corn leafhopper, Dalbulus maidis (DeLog and Wolcott) (Hemiptera: Cicadellidae) were evaluated in two experiments in a screenhouse in Sete Lagoas, Minas Gerais State, Brazil. Approximately 200 mollicute-free adults of D. maidis were confined on popcorn (Zea mays L. cv. IAC125) plants infected with spiroplasma and the same number of mollicute-free leafhoppers were confined on plants infected with phytoplasma. They remained on the source plants for a 6 d acquisition access period (AAP). Next, leafhoppers were fed healthy popcorn seedlings. Transmission tests were performed with one leafhopper per seedling for each mollicute, with 12 replicates, at 12, 20, 30, 40 d since the first day of AAP. In addition, at 40 d, one leafhopper with phytoplasma and another with spiroplasma were confined together on 24 popcorn seedlings. The inoculation access period (IAP) was 3 d. The temperature was recorded daily during the experimental periods. In Experiment 1, during the 40 d latent period, only 41.6% and 58.3% of plants, respectively, exposed to phytoplasma or to both mollicutes presented MBS-phytoplasma symptoms. In Experiment 2, during the 20 d latent period, some popcorn plants presented MBS-phytoplasma (16.7%) and CSS (33.3%) symptoms, whereas almost 100% of plants at the 30 and 40 d latent period presented disease symptoms. Plant symptoms and results from PCR tests indicated that MBS-phytoplasma was more tolerant to low temperatures than S. kunkelii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barros, T. S. L., Davis, R. E., Resende, R. O., & Dally, E. L. (2001). Design of a polymerase chain reaction for specific detection of corn stunt spiroplasma. Plant Disease, 85, 475–480.

    Article  CAS  Google Scholar 

  • Bascopé-Quintanilla, J. B. (1977). Agente causal de la llamada “raza mesa central” del achaparramiento del maiz. Dissertation. Chapingo, Mexico: Escuela Nacional de Agricultura, Colégio de Postgraduados.

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, B, 26, 211–234.

    Google Scholar 

  • Costa, A. S., Kitajima, E. W., & Arruda, S. C. (1971). Moléstias de vírus e de micoplasma no milho em São Paulo. Revista da Sociedade Brasileira de Fitopatologia, 4, 39–41.

    Google Scholar 

  • Ferreira, E.B., Cavalcanti, P.P., & Nogueira, D.A. (2013) Package 'ExpDes.pt'. 2013. https://cran.r-project.org/web/packages/ExpDes.pt/ExpDes.pt.pdf.

  • Galvão, S. R. (2019). Enfezamentos do milho: incidência do fitoplasma e espiroplasma, dinâmica populacional, expressão de sintomas e caracterização molecular do fitoplasma com base no gene SecY. Thesis. Piracicaba, Brazil: Escola Superior de Agricultura Luiz de Queiroz.

    Google Scholar 

  • Hruska, A. J., Gladstone, S. M., & Obando, R. (1996). Epidemic roller coaster: Maize stunt in Nicaragua. American Entomologist, 42, 248–252.

    Article  Google Scholar 

  • Junqueira, A., Bedendo, I., & Pascholati, S. (2004). Biochemical changes in corn plants infected by maize bushy stunt phytoplasma. Physiological and Molecular Plant Pathology, 65, 181–185.

    Article  CAS  Google Scholar 

  • Lee, I., Hamond, R. W., Davis, R. E., & Gundersen, D. E. (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Molecular Plant Pathology, 83, 834–842.

    CAS  Google Scholar 

  • Liao, C. H., & Chen, T. A. (1978). Effect of osmotic potential, pH, and temperature on the growth of a helical, motile mycoplasma causing corn stunt disease. Canadian Journal of Microbiology, 24, 325–329.

    Article  CAS  Google Scholar 

  • Massola Júnior, N. S., Bedendo, I. P., Amorim, L., & Lopes, J. R. S. (1999). Quantificação de danos causados pelo enfezamento vermelho e enfezamento pálido do milho em condições de campo. Fitopatologia Brasileira, 24, 136–142.

    Google Scholar 

  • Moya-Raygoza, G., & Nault, L. R. (1998). Transmission biology of maize bushy stunt by the corn leafhopper (Homopera: Cicadellidae). Annals of the Entomological Society of America, 91, 668–676.

    Article  Google Scholar 

  • Nault, L. R. (1980). Maize bushy stunt and corn stunt: A comparison of disease symptoms, pathogen host ranges, and vectors. Phytopathology, 70, 659–662.

    Article  Google Scholar 

  • Nome, C., Magalhães, P. C., Oliveira, E., Nome, S., & Laguna, I. G. (2009). Differences in intracelular localization of corn stunt spiroplasmas in magnesium treated maize. Biocell, 33, 133–136.

    PubMed  Google Scholar 

  • Oliveira, C. M., Lopes, J. R. S., & Nault, L. R. (2013). Survival strategies of Dalbulus maidis during maize off-season in Brazil. Entomologia Experimentalis et Applicata, 147, 141–153.

    Article  Google Scholar 

  • Oliveira, C. M., Lopes, J. R. S., & Querino, R. B. (2017). Rearing techniques of corn leafhopper to transmission studies and biological control. In C. M. Oliveira & E. O. Sabato (Eds.), Diseases in maize: Insect-vetors, mollicutes and virus (pp. 153–184). Brasília/DF, Brazil: Embrapa Informação Tecnológica.

    Google Scholar 

  • Oliveira, C. M., Molina, R. M. S., Albres, R. S., & Lopes, J. R. S. (2002a). Disseminação de molicutes do milho a longas distâncias por Dalbulus maidis (Hemiptera: Cicadellidae). Fitopatologia Brasileira, 27, 91–95.

    Article  Google Scholar 

  • Oliveira, E., Carvalho, R. V., Duarte, A. P., Andrade, R. A., Resende, R. O., Oliveira, C. M., & Reco, P. C. (2002c). Molicutes e vírus em milho na safrinha e na safra de verão. Revista Brasileira de Milho e Sorgo, 1, 38–46.

    Article  Google Scholar 

  • Oliveira, E., Landau, E. C., & Sousa, S. M. (2015). Simultaneous transmission of phytoplasma and spiroplasma by Dalbulus maidis leafhopper and symptoms of infected maize. Phytopathogenic Mollicutes, 5, 99–100.

    Article  Google Scholar 

  • Oliveira, E., Magalhães, P. C., Gomide, R. L., Vasconcelos, C. A., Souza, I. R. P., Cruz, I., & Shafert, R. (2002b). Growth and nutrition of mollicute infected maize. Plant Disease, 86, 945–949.

    Article  Google Scholar 

  • Oliveira, E., Santos, J. C., Magalhães, P. C., & Cruz, I. (2007). Maize bushy stunt phytoplasma transmission is affected by spiroplasma acquisition and environmental conditions. Bulletin of Insectology, 60, 229–230.

    Google Scholar 

  • Oliveira, E., Waquil, J. M., Fernandes, F. T., Paiva, E., Resende, R. O., & Kitajima, W. E. (1998). Enfezamento pálido e enfezamento vermelho na cultura do milho no Brasil central. Fitopatologia Brasileira, 23, 45–47.

    Google Scholar 

  • Ozbek, E., Miller, S. A., Meulia, T., & Hogenhouth, S. A. (2003). Infection and replication sites of Spiroplasma kunkelli (class: Molllicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. Journal of Invertebrate Pathology, 82, 167–175.

    Article  Google Scholar 

  • Pohlert, T. (2014). The pairwise multiple comparison of mean ranks package (PMCMR). R Package. http://CRAN.R-project.org/package=PMCMR.

    Google Scholar 

  • R Development Core Team (2019). R: a language and environment for statistical computing Vienna: R Foundation for Statistical Computing, 2019. https://www.r-project.org.

  • Sabato, E. O. (2017). Corn stunting diseases. In C. M. Oliveira & E. O. Sabato (Eds.), Diseases in maize: Insect-vetors, mollicutes and virus (pp. 11–24). Brasília/DF, Brazil: Embrapa Informação Tecnológica.

    Google Scholar 

  • Sousa, S. M., & Barros, B. A. (2017). Mollecular detection of mollicutes in maize. In C. M. Oliveira & E. O. Sabato (Eds.), Diseases in maize: Insect-vetors, mollicutes and virus (pp. 25–34). Brasília/DF, Brazil: Embrapa Informação Tecnológica.

    Google Scholar 

  • Vettori, L. (1969). Métodos de análise do solo. Rio de Janeiro, Brazil: Ministério da Agricultura-EPFS.

    Google Scholar 

  • Whitcomb, R. F., Chen, T. A., Williamson, D. L., Liao, C., Trully, J. G., Bové, J. M., Mouches, C., Rose, D., Coan, M. E., & Clark, T. B. (1986). Spiroplasma kukelii sp. Nov.: Characterization of the ethiological agent of corn stunt disease. International Journal of Systematic and Evolutionary Microbiology, 36, 170–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Oliveira.

Ethics declarations

Conflict of interest

The authors have not found any potential conflicts of interest and all ethical aspects are considered.

Human and animal rights

This research does not contain any studies with human participants or animals performed by any of authors.

Ethical approval

The authors bear all the ethical responsibilities of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabato, E.O., Landau, E.C., Barros, B.A. et al. Differential transmission of phytoplasma and spiroplasma to maize caused by variation in the environmental temperature in Brazil. Eur J Plant Pathol 157, 163–171 (2020). https://doi.org/10.1007/s10658-020-01997-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-01997-9

Keywords

Navigation