Skip to main content
Log in

Russian Studies of Atmospheric Ozone and Its Precursors in 20152018

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This review contains the most important results obtained by Russian scientists in studying atmospheric ozone in 2015–2018 and is a part of the Russian National Report on Meteorology and Atmospheric Sciences that was prepared for the International Association of Meteorology and Atmospheric Sciences (IAMAS). This report was considered and approved at the 27th General Assembly of the International Union of Geodesy and Geophysics (IUGG). A list of main Russian publications on atmospheric ozone and its precursors is appended to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. F. Elansky, “Russian studies of atmospheric ozone in 2011–2014,” Izv., Atmos. Ocean. Phys. 52 (2), 132–146 (2016). https://doi.org/10.1134/S0001433816020031

    Article  Google Scholar 

  2. V. A. Lapchenko and A. M. Zvyagintsev, “Trace atmospheric gases in the Karadag nature reserve in Crimea,” Atmos. Oceanic Opt. 28 (4), 308–311 (2015).

    Article  Google Scholar 

  3. A. M. Zvyagintsev, I. N. Kuznetsova, I. Yu. Shalygina, V. A. Lapchenko, N. E. Brusova, A. A. Arkhangelskaya, N. V. Tereb, and E. A. Lezina, “Causes and factors of positive surface ozone anomalies in the Moscow region and on the southeastern coast of the Crimea,” Atmos. Oceanic Opt. 29 (6), 551–560 (2016).

    Article  Google Scholar 

  4. V. A. Lapchenko, “Surface ozone and indicator plants for its damaging influence,” Vestn. Akad. Nauk Abhaz., No. 6, 342–347 (2016).

  5. A. M. Zvyagintsev, N. S. Ivanova, I. N. Kuznetsova, and V. A. Lapchenko, “Ozone content over the Russian Federation in 2016,” Russ. Meteorol. Hydrol. 42, 135–140 (2017).

    Article  Google Scholar 

  6. I. Yu. Shalygina, I. N. Kuznetsova, A. M. Zvyagintsev, and V. A. Lapchenko, “Surface Ozone on the Coasts of the Balkans and Crimea,” Opt. Atmos. Okeana 30 (6), 515–523 (2017).

    Google Scholar 

  7. A. M. Zvyagintsev, N. S. Ivanova, G. M. Kruchenitskii, I. N. Kuznetsova, and V. A. Lapchenko, “Ozone content over the Russian Federation in 2017,” Russ. Meteorol. Hydrol. 43 (2), 127–133 (2018).

    Article  Google Scholar 

  8. O. Khuriganova, V. Obolkin, H. Akimoto, T. Ohizumi, T. Khodzher, V. Potemkin, and L. Golobokova, “Long-term dynamics of ozone in surface atmosphere at remote mountain, rural and urban sites of South-East Siberia, Russia,” Open Access Library J. 3, e2578 (2016). https://doi.org/10.4236/oalib.1102578

    Article  Google Scholar 

  9. V. A. Obolkin, V. L. Potemkin, V. L. Makukhin, T. V. Khodzher, and E. V. Chipanina, “Long-range transport of plumes of atmospheric emissions from regional coal power plants to the South Baikal water basin,” Atmos. Oceanic Opt. 30, 360–365 (2017). https://doi.org/10.1134/S1024856017040078

    Article  Google Scholar 

  10. A. M. Trifonova-Yakovleva, S. A. Gromov, S. S. Gromov, T. V. Khodzher, V. L. Potemkin, and V. A. Obolkin, “Assessment of the possibility of using a high-resolution ozone profile recorded by the GOME-2 device for the estimation of surface ozone concentration,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 14 (5), 239–247 (2017). https://doi.org/10.21046/2070-7401-2017-14-5-239-247

    Article  Google Scholar 

  11. V. A. Obolkin, E. P. Maysyuk, I. Yu. Ivanova, and T. V. Khodzher, “Nitrogen oxides in the atmosphere of coastal areas of Lake Baikal: sources and possible impact on the ecosystem of the lake,” Proc. SPIE 10833 (2018). https://doi.org/10.1117/12.2505770

  12. V. Obolkin, T. Khodzher, L. Sorokovikova, I. Tomberg, O. Netsvetaeva, and L. Golobokova, “Effect of long-range transport of sulphur and nitrogen oxides from large coal power plants on acidification of river waters in the Baikal region, East Siberia,” Int. J. Environ. Stud. 73, 452–461 (2016).

    Article  Google Scholar 

  13. B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Air-temperature dependence of the ozone generation rate in the surface air layer,” Atmos. Oceanic Opt. 31, 187–196 (2018).

    Article  Google Scholar 

  14. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, P. Nédélec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Oceanic Opt. 31, 300–310 (2018).

    Article  Google Scholar 

  15. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Study of air composition in different air masses,” Atmos. Oceanic Opt. 32 (1), 72–79 (2019).

    Article  Google Scholar 

  16. B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “A study of the relationship between snow cover and ground ozone concentration near the city of Tomsk,” Opt. Atmos. Okeana 31 (8), 665–669 (2018).

    Article  Google Scholar 

  17. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, K. S. Law, Ph. Nédélec, J. -D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov. “Comparison of distributions of atmospheric gas admixture concentrations measured by remote and in situ instruments over the Russian sector of the Arctic,” Atmos. Oceanic Opt. 31, 626–634 (2018).

    Article  Google Scholar 

  18. D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V.Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 years of the tropospheric ozone research station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Oceanic Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  19. P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Fofonov, A. V. Kozlov, J. -D. Paris, P. Nedelec, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, “Distribution of trace gases and aerosols in the troposphere over Siberia during wildfires of summer 2012,” J. Geophys. Res. 123, 2285–2297 (2018).

    Google Scholar 

  20. A. A. Nevzorov, V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko, and Yu. V. Gridnev, “Comparison of vertical ozone profiles based on lidar and satellite measurements of 2015,” Opt. Atmos. Okeana 29 (8), 703–708 (2016).

    Google Scholar 

  21. T. K. Sklyadneva, G. A. Ivlev, B. D. Belan, M. Yu. Arshinov, and D. V. Simonenkov, “Radiation regimen of Tomsk under the conditions of smoke haze,” Opt. Atmos. Okeana 28 (3), 215–222 (2015).

    Google Scholar 

  22. V. D. Burlakov, S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, and O. A. Romanovskii, “Retrieval of vertical ozone concentration profiles from the data of lidar sensing,” Russ. Phys. J. 58, 1111–1117 (2015).

    Article  Google Scholar 

  23. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, “Intercomparison of ozone vertical profile measurements by differential absorption lidar and IASI/MetOp satellite in the upper troposphere-lower stratosphere,” Remote Sens. 9 (5), 447 (2017).

    Article  Google Scholar 

  24. S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, “Lidar differential absorption system for measuring ozone in the upper troposphere–stratosphere,” J. Appl. Spectrosc. 85 (6), 1114–1120 (2018).

    Article  Google Scholar 

  25. P. N. Antokhin, O. Yu. Antokhina, and B. D. Belan, “Estimation of the ozone formation rate in the atmospheric boundary layer over a background region of Western Siberia,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 96803Y (2015). https://doi.org/10.1117/12.2205688

  26. V. N. Kozhevnikov, N. F. Elansky, and K. B. Moiseenko, “Mountain wave-induced variations of ozone and total nitrogen dioxide contents over the Subpolar Urals,” Dokl. Earth Sci. 475, 958–962 (2017). https://doi.org/10.1134/S1028334X17080232

    Article  Google Scholar 

  27. N. F. Elansky, M. A. Lokoshchenko, A. V. Trifanova, I. B. Belikov, and A. I. Skorokhod, “On contents of trace gases in the atmospheric surface layer over Moscow,” Izv., Atmos. Ocean. Phys. 51 (1), 30–41 (2015). https://doi.org/10.1134/S000143381501003X

    Article  Google Scholar 

  28. M. A. Lokoshchenko, N. F. Elanskii, A. V. Trifanova, I. B. Belikov, and A. I. Skorokhod, “On the limiting levels of air pollution in Moscow,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 4, 29–39 (2016).

  29. N. F. Elansky and O. V. Lavrova, “Minor gases species in the atmosphere of Russian cities from mobile laboratory measurements (TROICA experiments),” Dokl. Earth Sci. 459, 1603–1608 (2014). https://doi.org/10.1134/S1028334X14120149

    Article  Google Scholar 

  30. N. F. Elansky, O. V. Lavrova, A. I. Skorokhod, and I. B. Belikov, “Trace gases in the atmosphere over Russian cities,” Atmos. Environ. 143, 108–119 (2016). https://doi.org/10.1016/j.atmosenv.2016.08.046

    Article  Google Scholar 

  31. V. S. Rakitin, Yu. A. Shtabkin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents,” Atmos. Oceanic Opt. 28, 533–542 (2015).

    Article  Google Scholar 

  32. N. F. Elansky, A. V. Shilkin, E. G. Semutnikova, P. V. Zaharova, V. S. Rakitin, N. A. Ponomarev, and Y. M. Verevkin, “Weekly cycle of pollutant concentrations in near-surface air over Moscow,” Atmos. Oceanic Opt. 32, 85–93 (2019). https://doi.org/10.15372/AOO20181009

    Article  Google Scholar 

  33. N. F. Elansky, N. A. Ponomarev, and Ya. M. Verevkin, “Air quality and pollutant emissions in the Moscow megacity in 2005–2014,” Atmos. Environ. 175, 54–64 (2018). https://doi.org/10.1016/j.atmosenv.2017.11.057

    Article  Google Scholar 

  34. A. I. Skorokhod, E. V. Berezina, K. B. Moiseenko, N. F. Elansky, and I. B. Belikov, “Benzene and toluene in the surface air of Northern Eurasia from TROIC-A-12 campaign along the Trans-Siberian railway,” Atmos. Chem. Phys. 17, 5501–5514 (2017).

    Article  Google Scholar 

  35. E. V. Berezina, K. B. Moiseenko, A. I. Skorokhod, N. F. Elansky, and I. B. Belikov, “Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia,” Dokl. Earth Sci. 474, 599–603 (2017). https://doi.org/10.1134/S1028334X1705021X

    Article  Google Scholar 

  36. N. Pankratova, A. Skorokhod, I. Belikov, N. Elansky, V. Rakitin, Y. Shtabkin, and E. Berezina, “Evidence of atmospheric response to methane emissions from the East Siberian Arctic shelf,” Geogr., Environ., Sustainability 11 (1), 85–92 (2018). https://doi.org/10.24057/2071-9388-2018-11-1-85-92

    Article  Google Scholar 

  37. V. S. Rakitin, N. F. Elansky, P. Wang, G. Wang, N. V. Pankratova, Yu. A. Shtabkin, A. I. Skorokhod, A. N. Safronov, M. V. Makarova, and E. I. Grechko, “Changes in trends of atmospheric composition over urban and background regions of Eurasia: estimates based on spectroscopic observations,” Geogr., Environ., Sustainability 11 (2), 84–96 (2018). https://doi.org/10.24057/2071-9388-2018-11-2-84-96

    Article  Google Scholar 

  38. K. A. Shukurov, A. N. Borovski, O. V. Postylyakov, A. V. Dzhola, E. I. Grechko, and Y. Kanaya, “Potential sources of tropospheric nitrogen dioxide for Western Moscow Region, Russia,” Proc. SPIE 10833, 108337N–7 (2018). https://doi.org/10.1117/12.2504138

    Article  Google Scholar 

  39. K. A. Shukurov, A. N. Borovski, E. I. Grechko, A. V. Dzhola, O. V. Postylyakov, and Y. Kanaya, “Potential sources of reactive gases for the west of Moscow oblast,” Proc. SPIE 10876, 108337C–8 (2018). https://doi.org/10.1117/12.2325844

    Article  Google Scholar 

  40. V. Dorokhov, V. Yushkov, A. Makshtas, G. Ivlev, N. Tereb, V. Savinykh, D. Shepelev, H. Nakajima, C. T. McElroy, D. Tarasick, F. Goutail, J. -P. Pommereau, and A. Pazmino, “Brewer, SAOZ and ozone sonde observations in Siberia,” Atmos.–Ocean 53 (1), 14–18 (2015). https://doi.org/10.1080/07055900.2013.830078

    Article  Google Scholar 

  41. K. A. Shukurov, O. V. Postylyakov, A. N. Borovski, L. M. Shukurova, A. N. Gruzdev, A. S. Elokhov, V. V. Savinykh, I. I. Mokhov, V. A. Semenov, O. G. Chkhetiani, and I. A. Senik, “Study of transport of atmospheric admixtures and temperature anomalies using trajectory methods at the A.M. Obukhov Institute of Atmospheric Physics,” IOP Conf. Ser.: Earth Environ. Sci 231, 012048 (2019). https://doi.org/10.1088/1755-1315/231/1/012048

  42. C. S. Zerefos, K. Eleftheratos, J. Kapsomenakis, S. Solomos, A. Inness, D. Balis, A. Redondas, H. Eskes, M. Allaart, V. Amiridis, A. Dahlback, V. De Bock, H. Diémoz, R. Engelmann, P. Eriksen, V. Fioletov, J. Gröbner, A. Heikkilä, I. Petropavlovskikh, J. Jarosławski, W. Josefsson, T. Karppinen, U. Köhler, C. Meleti, C. Repapis, J. Rimmer, V. Savinykh, V. Shirotov, A. M. Siani, A. R. D. Smedley, M. Stanek, and R. Stübi, “Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations,” Atmos. Chem. Phys. 17, 551–574 (2017).

    Article  Google Scholar 

  43. D. V. Ionov, Yu. M. Timofeyev, and A. V. Poberovskii, “Spectroscopic measurements of O3 and NO2 atmospheric content: Correction of ground-based method and comparison with satellite data,” Atmos. Oceanic Opt. 28, 526–532 (2015).

    Article  Google Scholar 

  44. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, M. Eremenko, and G. Dufour, “Evaluation of ozone content in different atmospheric layers using ground-based Fourier transform spectrometry,” Izv., Atmos. Ocean. Phys. 51, 167–176 (2015).

    Article  Google Scholar 

  45. A. S. Garkusha, A. V. Polyakov, Yu. M. Timofeyev, and Ya. A. Virolainen, “Determination of the total ozone content from data of satellite IR Fourier-spectrometer,” Izv., Atmos. Ocean. Phys. 53 (4), 433–440 (2017). https://doi.org/10.1134/S0001433817040041

    Article  Google Scholar 

  46. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, A. V. Polyakov, and A. M. Shalamyanskii, “Empirical assessment of errors in total ozone measurements with different instruments and methods,” Atmos. Oceanic Opt. 30 (4), 382–388 (2017). https://doi.org/10.1134/S1024856017040133

    Article  Google Scholar 

  47. Yu. M. Timofeyev, Ya. A. Virolainen, S. P. Smyshlyaev, and M. A. Motsakov, “Ozone over St. Petersburg: Comparison of experimental data and numerical simulation,” Atmos. Oceanic Opt. 30, 263–268 (2017). https://doi.org/10.1134/S1024856017030149

    Article  Google Scholar 

  48. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Polyakov, D. V. Ionov, O. Kirner, A. V. Poberovskii, and H. Kh. Imhasin, “Comparing data obtained from ground-based measurements of the total contents of O3, HNO3, HCl, and NO2 and from their numerical simulation,” Izv., Atmos. Ocean. Phys. 52 (1) 64–73 (2016). https://doi.org/10.7868/S0002351515060140

    Article  Google Scholar 

  49. G. M. Shved, Ya. A. Virolainen, Yu. M. Timofeyev, S. I. Ermolenko, S. P. Smyshlyaev, M. A. Motsakov, and O. Kirner. “Ozone temporal variability in the Subarctic region: Comparison of satellite measurements with numerical simulations,” Izv., Atmos. Ocean. Phys. 54, 32–38 (2018). https://doi.org/10.7868/S000335151801004X

    Article  Google Scholar 

  50. A. M. Zvyagintsev, P. N. Vargin, and S. Peshin, “Total ozone variations and trends during the period of 1979–2014,” Atmos. Oceanic Opt. 28 (6), 575–584 (2015).

    Article  Google Scholar 

  51. M. P. Nikiforova, P. N. Vargin, and A. M. Zvyagintsev, “Ozone anomalies over Russia in the winter-spring of 2015/2016,” Russ. Meteorol. Hydrol. 44, 23–32 (2019).

    Article  Google Scholar 

  52. N. S. Ivanova, I. N. Kuznetsova, and K. A. Sumerova, “Atmospheric ozone anomalies in February–March 2018,” Tr. Gidrometeorol. Nauchno-Issled. Tsentra Rossii 370, 36–47 (2018).

    Google Scholar 

  53. N. S. Ivanova, “Comparison of total ozone content derived from ground-based and satellite measurements,” Tr. Gidrometeorol. Nauchno-Issled. Tsentra Rossii 365, 94–100 (2017).

    Google Scholar 

  54. K. N. Visheratin, “Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland),” Izv., Atmos. Ocean. Phys. 52 (1), 66–73 (2016).

    Article  Google Scholar 

  55. K. N. Visheratin, “Spatio-temporal variability of the phase of total ozone quasi-decennial oscillations,” Izv., Atmos. Ocean. Phys. 53 (9), 904–910 (2017).

    Article  Google Scholar 

  56. K. N. Visheratin and M. V. Kalashnik, “Quasi-decadal variations of lower stratosphere meteorological parameters and total ozone global fields based on satellite data,” Izv., Atmos. Ocean. Phys. 54, 1068–1750 (2018).

    Article  Google Scholar 

  57. K. N. Visheratin and V. V. Kuznetsov, “Basic characteristics of total ozone global field variability from merged databases comparison,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 13 (3), 165–172 (2017). https://doi.org/10.21046/2070-7401-2016-13-3-165-172

    Article  Google Scholar 

  58. K. N. Visheratin, A. F. Nerushev, M. D. Orozaliev, X. Zheng, Sh. Sun, and L. Liu, “Temporal variability of total ozone in the Asian region inferred from groundbased and satellite measurement data,” Izv., Atmos. Ocean. Phys. 53 (9), 894–903 (2017).

    Article  Google Scholar 

  59. S. A. Sitnov and I. I. Mokhov, “Satellite-derived peculiarities of total ozone field under atmospheric blocking conditions over the European part of Russia in summer 2010,” Russ. Meteorol. Hydrol. 41, 28–36 (2016).

    Article  Google Scholar 

  60. S. A. Sitnov, I. I. Mokhov, and V. A. Bezverkhnii, “Analysis of the distinctive features of the relationship between total ozone content and water vapor content over European Russia with the North Atlantic oscillation in summer 2010,” Opt. Atmos. Okeana 29 (6), 457–461 (2016). https://doi.org/10.15372/AOO20160601

    Article  Google Scholar 

  61. S. A. Sitnov and I. I. Mokhov, Ozone mini-hole formation under prolonged blocking anticyclone conditions in the atmosphere over European Russia in summer 2010, Dokl. Earth Sci. 460 (1), 41–45 (2015). https://doi.org/10.1134/S1028334X15010067

    Article  Google Scholar 

  62. S. A. Sitnov, I. I. Mokhov, and V. A. Bezverkhnii, “Connections of precipitable water vapor and total ozone anomalies over European Russia with the North Atlantic Oscillation: specific features of summer 2010,” Izv. Atmos. Ocean. Phys. 53, 885–893 (2017). https://doi.org/10.1134/S0001433817090286

    Article  Google Scholar 

  63. S. A. Sitnov, I. I. Mokhov, and A. R. Lupo, “Ozone, water vapor, and temperature anomalies associated with atmospheric blocking events over Eastern Europe in spring – summer 2010,” Atmos. Environ. 164, 180–194 (2017). https://doi.org/10.1016/j.atmosenv.2017.06.004

    Article  Google Scholar 

  64. E. E. Sibir and V. F. Radionov, “Variation of total ozone content at the Russian Antarctic stations: the results of multiannual observations,” Probl. Arkt. Antarkt. 64 (3), 250–261 (2018).

    Article  Google Scholar 

  65. V. F. Radionov, D. M. Kabanov, V. V. Pol’kin, D. E. Savkin, S. M. Sakerin, and E. E. Sibir, “Changes in the aerosol and gas composition characteristics of the atmosphere along the routes of Akademik Fedorov and Akademik Treshnikov research vessels during the 59 RAE (November 2013–May 2014),” Probl. Arkt. Antarkt., No. 4, 5–19 (2015).

  66. Y. M. Timofeyev, S. P. Smyshlyaev, Y. A. Virolainen, A. S. Garkusha, A. V. Polyakov, M. A. Motsakov, and O. Kirner, “Case study of ozone anomalies over northern Russia in the 2015/2016 winter: Measurements and numerical modeling,” Ann. Geophys. 36, 1495–1505 (2018). https://doi.org/10.5194/angeo-36-1495-2018

    Article  Google Scholar 

  67. A. N. Borovskii, A. Ya. Arabov, G. S. Golitsyn, A. N. Gruzdev, N. F. Elanskii, A. S. Elokhov, I. I. Mokhov, V. V. Savinykh, I. A. Senik, and A. V. Timazhev, “Variations of total nitrogen oxide content in the atmosphere over the North Caucasus,” Russ. Meteorol. Hydrol. 41 (2), 93–103 (2016). https://doi.org/10.3103/S1068373916020035

    Article  Google Scholar 

  68. V. Yu. Ageyeva, A. N. Gruzdev, A. S. Elokhov, and M. V. Grishaev, “Winter–spring anomalies in the stratospheric content of NO2 from ground-based measurement results,” Izv., Atmos. Ocean. Phys. 51, 397–404 (2015). https://doi.org/10.1134/S0001433815020024

    Article  Google Scholar 

  69. V. Yu. Ageyeva and A. N. Gruzdev, “Seasonal features of quasi-biennial variations of NO2 stratospheric content derived from ground-based measurements,” Izv., Atmos. Ocean. Phys. 53, 65–75 (2017).

    Article  Google Scholar 

  70. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Anomalies of the ozone and nitrogen dioxide contents in the stratosphere over Moscow region as a manifestation of the dynamics of the stratospheric polar vortex,” Dokl. Earth Sci. 468 (2), 602–606 (2016).

    Article  Google Scholar 

  71. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Winter–spring anomalies in stratospheric O3 and NO2 contents over the Moscow region in 2010 and 2011,” Izv., Atmos. Ocean. Phys. 53 (2), 195–203 (2017).

    Article  Google Scholar 

  72. V. Yu. Ageyeva, A. N. Gruzdev, A. S. Elokhov, I. I. Mokhov, and N. E. Zueva, “Sudden stratospheric warmings: Statistical characteristics and influence on NO2 and O3 total contents,” Izv., Atmos. Ocean. Phys. 53 (5), 477–486 (2017).

    Article  Google Scholar 

  73. A. N. Gruzdev, V. Yu. Ageyeva, and A. S. Elokhov, “Changes in vertical distribution and column content of NO2 under the influence of sudden stratospheric warmings,” Izv., Atmos. Ocean. Phys. 54 (4), 354–363 (2018). https://doi.org/10.1134/S0001433818040229

    Article  Google Scholar 

  74. V. Yu. Ageyeva, A. N. Gruzdev, and A. S. Elokhov, “Increase in the stratospheric NO2 content derived from results of ground-based observations after the October 2003 solar proton event,” Dokl. Earth Sci. 479 (2), 539–542 (2018). https://doi.org/10.1134/S1028334X18040219

    Article  Google Scholar 

  75. V. V. Savinykh and O. V. Postylyakov, “On development of cross-platform software to continue long-term observations with the Brewer Ozone Spectrophotometer,” Proc. SPIE—Int. Soc. Opt. Eng. 10786, 1–12 (2018). https://doi.org/10.1117/12.2515121

  76. V. V. Savinykh, A. N. Borovski, O. V. Postylyakov, and D. V. Dormidontov, “Cross-platform software to continue long-term observations with the Brewer spectrophotometer in the face of changing computer platforms: Implementing the Model-View architecture,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 1–9 (2018). https://doi.org/10.1117/12.2504611

  77. V. V. Savinykh and O. V. Postylyakov, “Implementing the Model/View architecture in software of Brewer Network Spectrophotometer for long-term monitoring of UV radiation and ozone atmospheric content,” IOP Conf. Ser.: Earth Environ. Sci 231, 012045 (2019). https://doi.org/10.1088/1755-1315/231/1/012045

  78. V. V. Savinykh and V. Yu. Skornyakov, “New cross-platform control software for Brewer spectrophotometer,” Proc. SPIE–Int. Soc. Opt. Eng. 10035, 1–6 (2016). https://doi.org/10.1117/12.2248536

  79. A. N. Borovski, A. V. Dzhola, E. I. Grechko, O. V. Postylyakov, V. A. Ivanov, and Y. Kanaya, “Measurements of formaldehyde total content in troposphere using DOAS technique in Moscow Region,” Proc. SPIE 9680, 96804Q–7 (2015). https://doi.org/10.1117/12.2205933

    Article  Google Scholar 

  80. O. Postylyakov, A. Borovski, and V. Ivanov, “On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique,” Proc. SPIE 9680, 96804O–1 (2015). https://doi.org/10.1117/12.2205925

    Article  Google Scholar 

  81. I. I. Bruchkouski, A. N. Borovski, A. V. Dzhola, N. F. Elansky, O. V. Postylyakov, O. E. Bazhenov, O. A. Romanovskii, S. A. Sadovnikov, and Y. Kanaya, “Observations of integral formaldehyde content in the lower troposphere in urban agglomerations of Moscow and Tomsk using the method of differential optical absorption spectroscopy,” Atmos. Oceanic Opt. 32, 248–256 (2019). https://doi.org/10.1134/S1024856019030047

    Article  Google Scholar 

  82. O. V. Postylyakov, A. N. Borovski, V. A. Ivanov, A. V. Dzhola, A. S. Elokhov, E. I. Grechko, and Y. Kanaya, “Formaldehyde integral content in troposphere of Moscow Region: preliminary results of 6 years of measurements using DOAS technique,” Proc. SPIE 10035, 100353A–8 (2015). https://doi.org/10.1117/12.2248630

    Article  Google Scholar 

  83. O. V. Postylyakov and A. N. Borovski, “Measurement of formaldehyde total content in troposphere using DOAS technique: improvements in version 1.3a of IAP retrieval algorithm,” Proc. SPIE—Int. Soc. Opt. Eng. 9876, 98761N–8 (2016). https://doi.org/10.1117/12.2229231

  84. V. Ivanov, A. Borovski, and O. Postylyakov, “First comparison of formaldehyde integral contents in ABL retrieved during clear-sky and overcast conditions by ZDOAS technique,” Proc. SPIE—Int. Soc. Opt. Eng. 10424, 104240O–9 (2017). https://doi.org/10.1117/12.2278235

  85. I. Bruchkouski, A. Borovski, A. Elokhov, and O. A. Postylyakov, “Layout of two-port DOAS system for investigation of atmospheric trace gases based on laboratory spectrograph,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100353C–9 (2016). https://doi.org/10.1117/12.2248634

  86. A. Borovski, O. Postylyakov, A. Elokhov, and I. Bruchkouski, “Study of different operational modes of the IAP 2-port-DOAS instrument for atmospheric trace gases investigation during CINDI-2 campaign basing on residual noise analysis,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 104662Z–9 (2017). https://doi.org/10.1117/12.2285798

  87. A. Borovski, A. Elokhov, O. Postylyakov, and I. Bruchkouski, “Study of different operational modes of the IAP 2-port-DOAS instrument for investigation of atmospheric trace gases during CINDI-2 campaign,” Proc. SPIE—Int. Soc. Opt. Eng. 10424, 104240Y–8 (2017). https://doi.org/10.1117/12.2278234

  88. E. Peters, G. Pinardi, A. Seyler, A. Richter, F. Wittrock, T. Bösch, M. Van Roozendael, F. Hendrick, T. Drosoglou, A. F. Bais, Y. Kanaya, X. Zhao, K. Strong, J. Lampel, R. Volkamer, T. Koenig, I. Ortega, O. Puentedura, M. Navarro-Comas, L. Gómez, M. Yela Gonzalez, A. Piters, J. Remmers, Y. Wang, T. Wagner, S. Wang, A. Saiz-Lopez, D. García-Nieto, C. A. Cuevas, N. Benavent, R. Querel, P. Johnston, O. Postylyakov, A. Borovski, A. Elokhov, I. Bruchkouski, H. Liu, C. Liu, Q. Hong, C. Rivera, M. Grutter, W. Stremme, M.F. Khokhar, J. Khayyam, and J. P. Burrows, “Investigating differences in DOAS retrieval codes using MAD-CAT campaign data,” Atmos. Meas. Tech 10, 955–978 (2017). https://doi.org/10.5194/amt-10-955-2017

    Article  Google Scholar 

  89. O. V. Postylyakov, A. N. Borovski, and A. A. Makarenkov, “First experiment on retrieval of tropospheric NO2 over polluted areas with 2.4-km spatial resolution basing on satellite spectral measurements,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 104662Y–8 (2017). https://doi.org/10.1117/12.2285794

  90. A. I. Chulichkov and O. V. Postylyakov, “Stereoscopic ground-based determination of the cloud base height: theory of camera position calibration with account for lens distortion,” Proc. SPIE—Int. Soc. Opt. Eng. 9876, 98763R–8 (2016). https://doi.org/10.1117/12.2228747

  91. A. I. Chulichkov, M. S. Andreev, G. S. Golitsyn, N. F. Elansky, A. P. Medvedev, and O. V. Postylyakov, “On cloud bottom boundary determination by digital stereo photography from the Earth’s surface,” Atmos. Oceanic Opt. 30 (2), 184–190 (2017). https://doi.org/10.1134/S1024856017020075

    Article  Google Scholar 

  92. A. I. Chulichkov, S. V. Nikitin, A. P. Medvedev, and O. V. Postylyakov, “Stereoscopic ground-based determination of the cloud base height: theory of camera position calibration with account for lens distortion,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100353B–10 (2016). https://doi.org/10.1117/12.2248633

  93. A. I. Chulichkov, S. V. Nikitin, A. S. Emilenko, and A. P. Medvedev, “Selection of optical model of stereophotography experiment for determination the cloud base height as a problem of testing of statistical hypotheses,” Proc. SPIE—Int. Soc. Opt. Eng. 10424, 104241–11 (2017). https://doi.org/10.1117/12.2279553

  94. I. K. Larin, “Odd oxygen and its atmospheric lifetime,” Russ. J. Phys. Chem. B 11, 375–379 (2017).

    Article  Google Scholar 

  95. I. K. Larin, “On the recovery of the ozone layer in the Northern Hemisphere in the XXI century,” Russ. J. Phys. Chem. B 9, 157–162 (2015).

    Article  Google Scholar 

  96. I. K. Larin, “The chemical composition of the middle atmosphere and its change in the XXI century,” Russ. J. Phys. Chem. B 12, 1–5 (2018).

    Article  Google Scholar 

  97. I. K. Larin, “Contribution of Ox, HOx, NOx, ClOx, and BrOx cycles to the destruction of stratospheric ozone in the 21st century,” Russ. J. Phys. Chem. B 11, 189–194 (2017).

    Article  Google Scholar 

  98. I. K. Larin, “Unresolved problems in the chemistry of the middle atmosphere,” Russ. J. Phys. Chem. B 12, 791–796 (2018).

    Article  Google Scholar 

  99. A. M. Zvyagintsev, P. N. Vargin, and S. Peshin, “Total ozone variations and trends during the period of 1979–2014,” Opt. Atmos. Okeana 28 (9), 1–10 (2015).

    Article  Google Scholar 

  100. R. M. Vil’fand, A. A. Kirsanov, A. P. Revokatova, G. S. Rivin, and G. V. Surkova, “Forecasting the transport and transformation of atmospheric pollutants with the COSMO-ART model,” Russ. Meteorol. Hydrol. 42, 292 (2017). https://doi.org/10.3103/S106837391705003X

    Article  Google Scholar 

  101. I. Yu. Shalygina, M. I. Nakhaev, I. N. Kuznetsova, E. V. Berezin, I. B. Konovalov, D. V. Blinov, and A. A. Kirsanov, “Comparison of surface concentration of polluting substances calculated by chemistry transport models with measurement data for the Moscow region,” Opt. Atmos. Okeana 30 (1), 53–59 (2017).

    Google Scholar 

  102. Yu. Shalygina, M. I. Nakhaev, I. N. Kuznetsova, I. B. Konovalov, and P. V. Zakharova, “Regional adaptation of the calculated EMEP emissions tor the CHIMERE chemical transport model,” Tr. Gidrometeorol. Nauchno-Issled. Tsentra Rossii 369, 33–45 (2018).

    Google Scholar 

  103. G. S. Rivin, I. A. Rozinkina, R. M. Vilfand, E. D. Astakhova, D. V. Blinov, A. A. Kirsanov, E. V. Kuzmina, A. V. Olchev 3, G. V. Surkova, M. V. Shatunova, N. E. Chubarova, M. M. Chumakov, D. Yu. Alferov, A. Yu. Bundel, V. V. Kopeikin, M. A. Nikitin, A. A. Poliukhov, A. P. Revokatova, E. V. Tatarinovich, and E. V. Churyulin, “COSMO – Ru: operational mesoscale numerical weather prediction system of the Hydrometcenter of Russia. Current status and recent developments,” in Research Activities in Atmospheric and Oceanic Modelling (World Meteorological Organization, Geneva, 2018), vol. 18, p. 12.

    Google Scholar 

  104. I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, R. V. Zhuravlev, and G. Janssens-Maenhout, “Estimation of fossil-fuel CO2 emissions using satellite measurements of “proxy” species,” Atmos. Chem. Phys. 16, 13509–13540 (2016). https://doi.org/10.5194/acp-16-13509-2016

    Article  Google Scholar 

  105. I. B. Konovalov, M. Beekmann, E. V. Berezin, H. Petetin, T. Mielonen, I. N. Kuznetsova, and M. O. Andreae, “The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia,” Atmos. Chem. Phys. 15, 13269–13297 (2015). https://doi.org/10.5194/acp-15-13269-2015

    Article  Google Scholar 

  106. I. B. Konovalov, M. Beekmann, E. V. Berezin, P. Formenti, and M. O. Andreae, “Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide,” Atmos. Chem. Phys. 17, 4513–4537 (2017).

    Article  Google Scholar 

  107. I. B. Konovalov, E. V. Berezin, and M. Beekmann, “Effect of photochemical self-action of carbon-containing aerosol: Wildfires,” Izv., Atmos. Ocean. Phys. 52 (3), 263–270 (2016).

    Article  Google Scholar 

  108. I. B. Konovalov, D. A. Lvova, and M. Beekmann, “Estimation of the elemental to organic carbon ratio in biomass burning aerosol using AERONET retrievals,” Atmosphere 8, 122 (2017). https://doi.org/10.3390/atmos8070122

    Article  Google Scholar 

  109. I. B. Konovalov, D. A. Lvova, M. Beekmann, H. Jethva, E. F. Mikhailov, J. -D. Paris, B. D. Belan, V. S. Kozlov, P. Ciais, and M. O. Andreae, “Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths,” Atmos. Chem. Phys. 18, 14889–14924 (2018).

    Article  Google Scholar 

  110. E. M. Volodin and S. V. Kostrykin, “The aerosol module in the INM RAS climate model,” Russ. Meteorol. Hydrol. 41, 519–528 (2016).

    Article  Google Scholar 

  111. A. N. Safronov, Yu. A. Shtabkin, E. V. Berezina, A. I. Skorokhod, V. S. Rakitin, I. B. Belikov, and N. F. Elansky, “Isoprene, methyl vinyl ketone and methacrolein from TROICA-12 measurements and WRF-CHEM and GEOS-CHEM simulations in the Far East region,” Atmosphere 10 (3), 152 (2019). https://doi.org/10.3390/atmos10030152

    Article  Google Scholar 

  112. A. N. Safronov, N. F. Elansky, and A. I. Skorokhod, “Detection of atmospheric pollution sources by using cross-plume scanning method and mobile railway laboratory,” Geogr., Environ., Sustainability 11 (3), 71–82 (2018). https://doi.org/10.24057/2071-9388-2018-11-3-71-82

    Article  Google Scholar 

  113. A. I. Skorokhod, N. F. Elansky, A. N. Safronov, I. D. Eremina, N. V. Pankratova, and N. E. Chubarova, “The impact of the April 2010 Eyjafjallajökull eruption on the atmosphere composition in Moscow,” J. Volcanol. Seismol. 10, 263–374 (2016). https://doi.org/10.1134/S0742046316040059

    Article  Google Scholar 

  114. V. S. Rakitin, Yu. A. Shtabkin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Results of comparison of the satellite measurements of total CO, CH4, and CO2 content to the ground-based spectroscopic data,” Opt. Atmos. Okeana 28 (9), 816–824 (2015). https://doi.org/10.15372/AOO20150907

    Article  Google Scholar 

  115. V. S. Rakitin, Yu. A. Shtabkin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents,” Atmos. Oceanic Opt. 28 (6), 533–542 (2015). https://doi.org/10.1134/S1024856015060135

    Article  Google Scholar 

  116. G. S. Golitsyn, E. I. Grechko, G. Wang, P. Wang, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015). https://doi.org/10.1134/S0001433815010041

    Article  Google Scholar 

  117. A. A. Krivolutsky, T. Yu. V’yushkova, L. A. Cherepanova, A. A. Kukoleva, A. I. Repnev, and M. V. Banin, “The three-dimensional photochemical model CHARM. Incorporation of solar activity,” Geomagn. Aeron. 55 (1), 59–88 (2015). https://doi.org/10.1134/S0016793215010077

    Article  Google Scholar 

  118. A. A. Krivolutsky, T. Yu. Vyushkova, and I. A. Mironova, “Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3d modeling),” Geomagn. Aeron. 57, 156–176 (2017). https://doi.org/10.1134/S0016793217020074

    Article  Google Scholar 

Download references

Funding

This review was supported as a research work conducted on government order 0189-2019-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Elansky.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elansky, N.F. Russian Studies of Atmospheric Ozone and Its Precursors in 20152018. Izv. Atmos. Ocean. Phys. 56, 141–155 (2020). https://doi.org/10.1134/S0001433820020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820020048

Keywords:

Navigation