Skip to main content
Log in

Numerical Simulation of the Sea Surface Rogue Waves within the Framework of the Potential Euler Equations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Direct numerical simulations of wind-generated gravity waves on a 2D sea surface are carried out within the framework of the basic potential equations of hydrodynamics. The data obtained for conditions of deep water, the JONSWAP spectrum and various wave intensities, widths of angular spectrum, and peakedness are processed and the results are discussed. The statistical and spectral characteristics of the waves evolve over a long time. The specific asymmetry of the typical profiles of anomalously high waves is shown. The durations of extreme events, which can be up to several tens of wave periods, are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Tanaka, “A method of studying nonlinear random field of surface gravity waves by direct numerical simulation,” Fluid Dyn. Res. 28, 41–60 (2001a).

    Article  Google Scholar 

  2. M. Tanaka, “Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations,” J. Fluid Mech. 444, 199–221 (2001b).

    Article  Google Scholar 

  3. D. Dommermuth and D. K. P. Yue, “A high–order spectral method for the study of nonlinear gravity waves,” J. Fluid Mech. 184, 267–288 (1987).

    Article  Google Scholar 

  4. B. J. West, K. A. Brueckner, R. S. Janda, D. M. Milder, and R. L. Milton, “A new numerical method for surface hydrodynamics,” J. Geophys. Res. 92, 11803–11824 (1987).

    Article  Google Scholar 

  5. M. Onorato, A. R. Osborne, and M. Serio, “On the relation between two numerical methods for the computation of random surface gravity waves,” Eur. J. Mech 26, 43–48 (2007).

    Article  Google Scholar 

  6. V. E. Zakharov, “Stability of periodic waves on the surface of a deep fluid,” Prikl. Mekh. Tekh. Fiz. 9 (2), 86–94 (1968).

    Google Scholar 

  7. D. V. Chalikov, Numerical Modeling of Sea Waves (Springer, Heidelberg, 2016).

    Book  Google Scholar 

  8. G. Ducrozet, F. Bonnefoy, D. Touzé, and P. Le Ferrant, “Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method,” Comput. Phys. Commun. 203, 245–254 (2016).

    Article  Google Scholar 

  9. S. Y. Annenkov and V. I. Shrira, “Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations,” J. Fluid Mech. 844, 766–795 (2018).

    Article  Google Scholar 

  10. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin–Heidelberg, 2009).

    Google Scholar 

  11. M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).

    Article  Google Scholar 

  12. A. V. Slunyaev, “Predicting rogue waves,” Moscow Univ. Phys. Bull. 72, 236–249 (2017).

    Article  Google Scholar 

  13. N. Kollisch, J. Behrendt, M. Klein, and N. Hoffman, “Nonlinear real time prediction of ocean surface waves,” Ocean Eng. 157, 387–400 (2018).

    Article  Google Scholar 

  14. E. Groesen, P. Turnip, and R. Kurnia, “High waves in Draupner seas–Part 1: numerical simulations and characterization of the seas,” J. Ocean Eng. Marine Energy 3, 233–245 (2017a).

    Article  Google Scholar 

  15. E. Groesen and A. P. Wijaya, “High waves in Draupner seas–Part 2: Observation and prediction from synthetic radar images,” J. Ocean Eng. Marine Energy 3, 325–332 (2017b).

    Article  Google Scholar 

  16. A. V. Slunyaev and V. I. Shrira, “On the highest non-breaking wave in a group: fully nonlinear water wave breathers vs weakly nonlinear theory,” J. Fluid Mech. 735, 203–248 (2013).

    Article  Google Scholar 

  17. A. Slunyaev, G. F. Clauss, M. Klein, and M. Onorato, “Simulations and experiments of short intense envelope solitons of surface water waves,” Phys. Fluids 25, 06705 (2013a).

    Article  Google Scholar 

  18. A. Slunyaev, E. Pelinovsky, A. Sergeeva, A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, “Super rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations,” Phys. Rev. E 88, 012909 (2013b).

    Article  Google Scholar 

  19. L. Cavaleri, “Wave modeling: Where to go in the future,” Bull. Am. Meteorol. Soc 87, 207–214 (2006).

    Article  Google Scholar 

  20. S. Y. Annenkov and V. I. Shrira, “On the predictability of evolution of surface gravity and gravity–capillary waves,” J. Fluid Mech. 449, 341–371 (2001).

    Article  Google Scholar 

  21. M. Onorato, A. R. Osborne, M. Serio, and S. Bertone, “Freak waves in random oceanic sea states,” Phys. Rev. Lett. 86, 5831–5834 (2001).

    Article  Google Scholar 

  22. M. Onorato, A. R. Osborne, and M. Serio, “Extreme wave events in directional, random oceanic sea states,” Phys. Fluids 14, L25–L28 (2002).

    Article  Google Scholar 

  23. A. I. Dyachenko and V. E. Zakharov, “Modulation instability of Stokes wave → freak wave,” JETP Lett. 81 (6), 255–259 (2005).

    Article  Google Scholar 

  24. A. Babanin, Breaking and Dissipation of Ocean Surface Waves (Cambridge Univ. Press, Cambridge, 2011).

    Book  Google Scholar 

  25. A. Slunyaev and A. Kokorina, “Account of occasional wave breaking in numerical simulations of irregular water waves in the focus of the rogue wave problem,” Wat. Waves, 1–20 (2019). www.arxiv.org/abs/1904.01853

  26. W. Xiao, Y. Liu, G. Wu, and D. K. P. Yue, “Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution,” J. Fluid Mech. 720, 357–392 (2013).

    Article  Google Scholar 

  27. D. Dommermuth, “The initialization of nonlinear waves using an adjustment scheme,” Wave Motion 32, 307–317 (2000).

    Article  Google Scholar 

  28. A. V. Slyunyaev, “Portraits of nonlinear sea waves in the Fourier space,” in Proc. Nonlinear Waves-2018 Sci. School (N. Novgorod, 26 February–4 March 2018) (IPF RAN, N. Novgorod, 2019).

  29. M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, and K. Trulsen, “Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events,” Phys. Rev. Lett. 102, 114502 (2009).

    Article  Google Scholar 

  30. P. A. E. M. Janssen, “Nonlinear four-wave interactions and freak waves”, J. Phys. Oceanogr. 33, 863–884 (2003).

    Article  Google Scholar 

  31. H. Socquet-Juglard, K. Dysthe, K. Trulsen, H. E. Krogstad, and J. -D. Liu, “Probability distributions of surface gravity waves during spectral changes,” J. Fluid Mech. 542, 195–216 (2005).

    Article  Google Scholar 

  32. L. Shemer and A. Sergeeva, “An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield,” J. Geophys. Res.: Oceans 114, C01015 (2009).

    Article  Google Scholar 

  33. L. Shemer, A. Sergeeva, and A. Slunyaev, “Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random field evolution: experimental validation,” Phys. Fluids 22, 016601 (2010).

    Article  Google Scholar 

  34. A. V. Slyunyaev and A. V. Sergeeva, “Stochastic simulation of unidirectional intense waves in deep water applied to rogue waves,” JETP Lett. 94, 779–786 (2012).

    Article  Google Scholar 

  35. A. Slunyaev, “Freak wave events and the wave phase coherence,” Eur. Phys. J.: Spec. Top. 185, 67–80 (2010).

    Google Scholar 

  36. V. Zakharov, “Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid,” Eur. J. Mech., B: Fluids 18, 327–344 (1999).

    Article  Google Scholar 

  37. A. I. Dyachenko, D. I. Kachulin, and V. E. Zakharov, “Super compact equation for water waves,” J. Fluid Mech. 828, 661–679 (2017).

    Article  Google Scholar 

  38. S. I. Badulin and V. E. Zakharov, “Ocean swell within the kinetic equation for water waves,” Nonlinear Proc. Geophys. 24, 237–253 (2017).

    Article  Google Scholar 

  39. V. I. Shrira, S. I. Badulin, and Ch. Kharif, “A model of water wave ‘horse-shoe’ patterns,” J. Fluid Mech. 318, 375–404 (1996).

    Article  Google Scholar 

  40. S. Yu. Annenkov and S. I. Badulin, “Multi-wave resonances and formation of high-amplitude waves in the ocean,” in Rogue Waves, Ed. by M. Olagnon and G. A. Athanassoulis (IFREMER, Brest, 2000), p. 205.

    Google Scholar 

  41. S. I. Badulin and D. V. Ivonin, “Three-dimensional freak waves. Once more on New Year wave,” Fund. Prikl. Gidrofiz. 5 (1), 37–51 (2012).

    Google Scholar 

  42. A. Sergeeva and A. Slunyaev, “Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states,” Nat. Hazards Earth Syst. Sci. 13, 1759–1771 (2013).

    Article  Google Scholar 

  43. A. Slunyaev, A. Sergeeva, and I. Didenkulova, “Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth,” Nat. Hazards 84 (2), 549–565 (2016).

    Article  Google Scholar 

  44. L. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  45. U. F. Pinho, P. C. Liu, and C. E. P. Ribeiro, “Freak waves at Campos Basin, Brazil,” Geofizika 21, 53–67 (2004).

    Google Scholar 

  46. A. V. Slunyaev and A. V. Kokorina, “Soliton groups as the reason for extreme statistics of unidirectional sea waves,” J. Ocean Eng. Marine Energy 3, 395–408 (2017).

    Article  Google Scholar 

  47. W. Fujimoto, T. Waseda, and A. Webb, “Impact of the four-wave quasi-resonance on freak wave shapes in the ocean,” Ocean Dyn 69, 101–121 (2019).

    Article  Google Scholar 

  48. A. Kokorina and A. Slunyaev, “Lifetimes of rogue wave events in direct numerical simulations of deep-water irregular sea waves,” Fluids 4, art. 70 (2019).

Download references

Funding

The study of the role of the high-order nonlinearity effects was carried out within the framework of project of the Russian Science Foundation 19-12-00253. Other studies were supported by the Russian Science Foundation, grant no. 16-17-00041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Slunyaev or A. Kokorina.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slunyaev, A., Kokorina, A. Numerical Simulation of the Sea Surface Rogue Waves within the Framework of the Potential Euler Equations. Izv. Atmos. Ocean. Phys. 56, 179–190 (2020). https://doi.org/10.1134/S0001433820020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820020127

Keywords:

Navigation