Skip to main content

Advertisement

Log in

PVT and Thermal-Pressure Coefficient Measurements and Derived Thermodynamic Properties of 2-Propanol in the Critical and Supercritical Regions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

PVT properties and the thermal-pressure coefficient, \(\gamma_{\text{V}} = \left( {\partial P/\partial T} \right)_{\text{V}}\), of 2-propanol have been simultaneously measured in the near- and supercritical regions using high-temperature and high-pressure nearly constant-volume piezo-calorimeter. Measurements were made along 9 liquid and 3 vapor isochores between (234.3 and 697.69) kg·m−3 and at temperatures from (317.17 to 522.36) K at pressures up to 6.05 MPa. For each measured isochore (\(\rho\)), the values of phase transition temperature (\(T_{S}\)) and pressure (\(P_{S}\)) at the liquid–gas phase equilibrium curve have been determined using the isochoric \(P - T\) break point and thermal-pressure coefficient abruptness techniques. The measured saturated liquid (\(\rho^{\prime}_{S}\)) and vapor (\(\rho^{\prime\prime}_{S}\)) densities near the critical point and thermal-pressure coefficient abruptness disappearance were used to estimate the values of the critical parameters (\(T_{C}\) = 508.72 K, \(P_{C}\) = 4.840 MPa, and \(\rho_{C}\) = 268.82 kg·m−3) of 2-propanol. The expanded uncertainty of the pressure (\(P\)), density (\(\rho\)), and thermal-pressure coefficient (\(\gamma_{\text{V}}\)) measurements at the 95 % confidence level with a coverage factor of k = 2 are estimated to be 0.05 %, 0.16 %, and 1.5 %, respectively. Scaling-type critical anomaly of the asymptotic behavior of thermal-pressure coefficient in the immediate vicinity of the critical point was experimentally observed. The measured pressures (\(PVT\)) and thermal-pressure coefficients (\(\gamma_{\text{V}} VT\)) have been used to calculate of the other key thermodynamic properties such as internal pressure (\(P_{\text{int}}\)), enthalpy (\(\Delta H_{vap}\)) and entropy (\(\Delta S_{vap}\)) of vaporization, saturation (\(C_{\text{sat}}\)), isobaric (\(C_{\text{P}}\)), and isochoric (\(C_{\text{V}}\)) heat capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K.Pruess, M. Azaroual, In: Proc. 31th Workshop on Geothermal Reservoir Engineering (Stanford University, Stanford, California, January 30–February 1, 2006)

  2. D.W. Brown, In: Proceedings fo Twenty-Fifth Workshop on Geothermal Reservoir Engineering (Stanford University, Stanford, California, January 24–26, 2000), SGP-TR-165

  3. C.J. Huang, J.C. Hsieh, D.T. Lin, MATEC Web of Conferences. EDP Sci. 60, 04010 (2016)

    Google Scholar 

  4. B. Bai, Y. He, X. Li, Geothermics 75, 40 (2018)

    Article  Google Scholar 

  5. C.M. White, Energy Fuels 19, 659 (2005)

    Article  Google Scholar 

  6. G.A. Manssori, J.L. Savidge, SPE 19809, (SPE, Inc., 1989), pp. 383–398

  7. I.D. Wilson, P. Davis, R.J. Ruane, Application of Supercritical Fluids in Industrial Analysis (CRC Press Inc, Boca Raton, 1993), pp. 74–104

    Book  Google Scholar 

  8. N.G. Polikhronidi, R.G. Batyrova, J. Wu, I.M. Abdulagatov, J. Mol. Liq. 293, 111381 (2019). https://doi.org/10.1016/j.molliq.2019.111381

    Article  Google Scholar 

  9. I.M. Abdulagatov, N.G. Polikhronidi, R.G. Batyrova, J. Chem. Thermodyn. 125, 107 (2018)

    Article  Google Scholar 

  10. N.G. Polikhronidi, I.M. Abdulagatov, R.G. Batyrova, G.V. Stepanov, Int. J. Thermophys. 30, 737 (2009)

    Article  ADS  Google Scholar 

  11. N.G. Polikhronidi, I.M. Abdulagatov, R.G. Batyrova, G.V. Stepanov, J.T. Wu, E.E. Ustuzhanin, Int. J. Thermophys. 33, 185 (2012)

    Article  ADS  Google Scholar 

  12. N.G. Polikhronidi, I.M. Abdulagatov, R.G. Batyrova, G.V. Stepanov, Bull. S. Petersburg Univ. 1, 154 (2013)

    Google Scholar 

  13. I.M. Abdulagatov, N.G. Polikhronidi, R.G. Batyrova, Fluid Phase Equilib. 415, 144 (2016)

    Article  Google Scholar 

  14. I.M. Abdulagatov, J.W. Magee, N.G. Polikhronidi, R.G. Batyrova, In: Enthalpy and Internal Energy: Liquids, Solutions and Vapors, T. Letcher, E. Wilhelm, Editors, Royal Society of Chemistry, Chap. 15, 380 (2017)

  15. I.M. Abdulagatov, J.W. Magee, N.G. Polikhronidi, R.G. Batyrova, In: Enthalpy and Internal Energy: Liquids, Solutions and Vapors, T. Letcher, E. Wilhelm, Editors, Royal Society of Chemistry, Chap. 16, 411 (2017)

  16. W. Westwater, H.W. Frantz, J.H. Hildebrand, Phys. Rev. 31, 135 (1928)

    Article  ADS  Google Scholar 

  17. E.B. Smith, J.H. Hildebrand, J. Chem. Phys. 22, 1060 (1954)

    Article  ADS  Google Scholar 

  18. H. Benninga, R.L. Scott, J. Chem. Phys. 23, 1911 (1955)

    Article  ADS  Google Scholar 

  19. B.J. Alder, E.W. Haycock, J.H. Hildebrand, H.J. Watts, Chem. Phys. 31, 145 (1959)

    Google Scholar 

  20. P.A. Walker, PhD Thesis, (London, 1956)

  21. N.G. Polikhronidi, I.M. Abdulagtaov, R.G. Batyrova, G.V. Stepanov, Int. J. Refriger. 32, 1897 (2009)

    Article  Google Scholar 

  22. N.G. Polikhronidi, R.G. Batyrova, J.W. Magee, I.M. Abdulagatov, J. Chem. Thermodyn. 135, 155 (2019)

    Article  Google Scholar 

  23. M. Frenkel R. Chirico, V. Diky, C.D. Muzny, A.F. Kazakov, J.W. Magee, I.M. Abdulagatov, Jeong Won Kang: NIST Thermo Data Engine, NIST Standard Reference Database 103b-Pure Compound, Binary Mixtures, and Chemical Reactions, (Version 5.0, National Institute Standards and Technology, Boulder, Colorado-Gaithersburg, MD, 2010)

  24. Kh.I. Amirkhanov, G.V. Stepanov, I.M. Abdulagatov, O.A. Bui, Isochoric Heat Capacity of 1-Propanol and 2-Propanol, Dagestan Scientific Center of the Russian Academy of Sciences, (Dagestan Scientific Center of the Russian Academy of Sciences, Makhachkala, 1989)

  25. D. Ambrose, J.F. Counsell, I.J. Lawrenson, G.B. Lewis, J. Chem. Thermodyn. 10, 1033 (1978)

    Article  Google Scholar 

  26. V.A. Cymarnyi, V.M. Palaguta, Russ. J. Appl. Chem. 63, 905 (1990)

    Google Scholar 

  27. M.P. Moreland, J.J. McKetta, I.H. Silberberg, J. Chem. Eng. Data 12, 366 (1967)

    Article  Google Scholar 

  28. M.P. Moreland, J.J. McKetta, I.H. Silberberg, J. Chem. Eng. Data 12, 329 (1967)

    Article  Google Scholar 

  29. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 10.0, Standard Reference Data Program, (National Institute of Standards and Technology, Gaithersburg, MD 2018)

  30. D. Ambrose, J. Chem. Thermodyn. 10, 765 (1978)

    Article  Google Scholar 

  31. M. Torcal, M.I. Teruel, J. Garcia, J.S. Urieta, A.M. Mainar, J. Chem. Eng. Data 55, 5332 (2010)

    Article  Google Scholar 

  32. C.J. Wormald, M.D. Vine, J. Chem. Thermodyn. 32, 659 (2000)

    Article  Google Scholar 

  33. D. Ambrose, R. Townsend, J. Chem. Soc. 54, 3614 (1963)

    Article  Google Scholar 

  34. I.F. Golubev, E.N. Bagina, (Russ.) Trudy GIAP, (Moscow, GIAP, 1963), pp. 39-54

  35. I.F. Golubev, T.N. Vasilkovskaya, V.S. Zolin, Russ. Inzh.-Fiz. Zh. 38, 668 (1980)

    Google Scholar 

  36. J.K. Tseng, L.I. Stiel, AIChE J. 17, 1283 (1971)

    Article  Google Scholar 

  37. I.F. Golubev, T.N. Vasilkovskaya, V.S. Zolin, Trudy GIAP, vol. 54 (GIAP, Moscow, 1979), pp. 5–15

    Google Scholar 

  38. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 399 (1942)

    Article  Google Scholar 

  39. M.T. Raetzsch, R. Findeisen, Z. Phys, Chem. (Leipzig) 261, 935 (1980)

    Google Scholar 

  40. F.E.M. Alaoui, E.A. Montero, J.-P. Bazile, F. Aguilar, C. Boned, J. Chem. Thermodyn. 54, 358 (2012)

    Article  Google Scholar 

  41. P. Gomez-Alvarez, D. Gonzalez-Salgado, J.-P. Bazile, D. Bessieres, F. Plantier, Fluid Phase Equilib. 358, 7 (2013)

    Article  Google Scholar 

  42. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 66, 185 (1931)

    Article  Google Scholar 

  43. H. Kubota, Y. Tanaka, T. Makita, Int. J. Thermophys. 8, 47 (1987)

    Article  ADS  Google Scholar 

  44. M. Moha-Ouchane, C. Boned, A. Allal, M. Benseddik, Int. J. Thermophys. 19, 161 (1998)

    Article  Google Scholar 

  45. C. Boned, M. Moha-Ouchane, Phys. Chem. Liq. 38, 113 (2000)

    Article  Google Scholar 

  46. A. Zuniga-Moreno, L.A. Galicia-Luna, J. Chem. Eng. Data 47, 155 (2002)

    Article  Google Scholar 

  47. P. Stringari, G. Scalabrin, A. Valtz, D. Richon, J. Chem. Thermodyn. 41, 683 (2009)

    Article  Google Scholar 

  48. T.E. Daubert, J.W. Jalowka, V. Goren, AIChE Symp. Ser. 83, 128 (1987)

    Google Scholar 

  49. A.R. Bazaev, I.M. Abdulagatov, E.A. Bazaev, A. Abdurashidova, J. Chem. Thermodyn. 39, 385 (2007)

    Article  Google Scholar 

  50. R.W. Bach, H.A. Friedrichs, High Temp. High Press. 9, 305 (1977)

    Google Scholar 

  51. J.M.H. Levelt Sengers, J.R. Hastings, Int. J. Thermophys. 2, 269 (1981)

    Article  ADS  Google Scholar 

  52. H. Lentz, Rev. Sci. Inst. 40, 371 (1968)

    Article  ADS  Google Scholar 

  53. A.E. Mather, R.J. Sadus, E.U. Franck, J. Chem. Thermodyn. 25, 771 (1993)

    Article  Google Scholar 

  54. N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, R.G. Batyrova, J. Chem. Eng. Data 46, 1064 (2001)

    Article  Google Scholar 

  55. N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, Int. J. Thermophys. 22, 189 (2001)

    Article  Google Scholar 

  56. N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, Int. J. Thermophys. 23, 745 (2002)

    Article  Google Scholar 

  57. N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, Int. J. Thermophys. 24, 405 (2003)

    Article  Google Scholar 

  58. N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, R.G. Batyrova, Int. J. Thermophys. 28, 163 (2007)

    Article  ADS  Google Scholar 

  59. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, J. Supercrit. Fluids 33, 209 (2004)

    Article  Google Scholar 

  60. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, J.T. Wu, Phys. Chem. Liq. 52, 657 (2014)

    Article  Google Scholar 

  61. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, J.T. Wu, Int. J. Thermophys. 37, 103 (2016)

    Article  ADS  Google Scholar 

  62. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, Russian J. Supercrit. Fluids. Theory Pract. 14, 73 (2019)

    Google Scholar 

  63. V.M. Valyashko, I.M. Abdulagatov, J.H.M. Levelt-Sengers, J. Chem. Eng. Data 45, 1139 (2000)

    Article  Google Scholar 

  64. I.K. Kamilov, G.V. Stepanov, I.M. Abdulagatov, A.R. Rasulov, E.M. Milikhina, J. Chem. Eng. Data 46, 1556 (2001)

    Article  Google Scholar 

  65. S.I. Orakova, S.M. Rasulov, I.M. Abdulagatov, Phys. Chem. Liq. 52, 130 (2014)

    Article  Google Scholar 

  66. S.I. Orakova, S.M. Rasulov, I.M. Abdulagatov, J. Mol. Liquids 187, 7 (2013)

    Article  Google Scholar 

  67. S.M. Rasulov, I.M. Abdulagatov, J. Mol. Liquids 237, 272 (2017)

    Article  Google Scholar 

  68. J.M. Costello, S.T. Bowden, Recl. Trav. Chim. Pays-Bas 77, 36 (1958)

    Article  Google Scholar 

  69. N.G. Polikhronidi, I.M. Abdulagatov, G.V. Stepanov, R.G. Batyrova, J. Supercrit. Fluids. 43, 1 (2007)

    Article  Google Scholar 

  70. N.G. Polikhronidi, R.G. Batyrova, A.M. Aliev, I.M. Abdulagatov, J. Thermal Sci. 28, 394 (2019)

    Article  Google Scholar 

  71. J. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures, 3rd edn. (Butterworths, London, 1982)

    Google Scholar 

  72. J.V. Sengers, J.M.H. Levelt Sengers, Ann. Rev. Phys. Chem. 37, 189 (1986)

    Article  ADS  Google Scholar 

  73. H. Behnejad, J.V Sengers, M.A. Anisimov, In: Appl. Thermodyn. Fluids, eds. A.R.H. Goodwin, J.V. Sengers, C.J. Peters, IUPAC. Chap. 10, 321 (2010)

  74. W. Dannhauser, L.W. Bahe, J. Chem. Phys. 40, 3058 (1964)

    Article  ADS  Google Scholar 

  75. K. Nasirzadeh, D. Zimin, R. Neueder, W. Kunz, J. Chem. Eng. Data 49, 607 (2004)

    Article  Google Scholar 

  76. A.L. Lydersen, V. Tsochev, Chem. Eng. Technol. 13, 125 (1990)

    Article  Google Scholar 

  77. M.E. Fisher, Critical Phenomena, Lectures Notes in Physics, F.J.W. Hahne, ed., Springer, Berlin, 186, 1(1988)

  78. J.C. Brown, J. Chem. Soc. Trans. 89, 311 (1906)

    Article  Google Scholar 

  79. A. Kreglewski, Bull. Acad. Pol. Sci. 2, 191 (1954)

    Google Scholar 

  80. V. Majer, V. Svoboda, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation (Blackwell Scientific Publications, Oxford, 1985), p. 300

    Google Scholar 

  81. D.J. Rosenthal, A.S. Teja, Ind. Eng. Chem. Res. 28, 1693 (1989)

    Article  Google Scholar 

  82. M. Gude, A.S. Teja, J. Chem. Eng. Data 40, 1025 (1995)

    Article  Google Scholar 

  83. S.P. Hoffman, J.L. San Jose, R.C. Reid, J. Chem. Eng. Data 22, 385 (1977)

    Article  Google Scholar 

  84. A. Nadezhdin, Zh. Russ. Fiz.-Khim. O-va 14, 536 (1882)

  85. P. De Heen, Research on Physics and Theory of Liquids, Experimental Part, (Paris, 1888) p. 102

  86. R.G. Wilhoit, B.J. Zwolinskii, J. Phys. Chem. Ref. Data 2, 88 (1973)

    Google Scholar 

  87. C. L. Young, Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1974, pp. 47–57

  88. A. Kreglewski, Rocz. Chem. 29, 754 (1955)

    Google Scholar 

  89. S.D. Ravikovich, V.P. Solomko, Ukr. Khim. Zh. 24, 7 (1958)

    Google Scholar 

  90. D. Ambrose, B.E. Broderick, R. Townsend, J. Appl. Chem. Biotechnol. 24, 359 (1974)

    Article  Google Scholar 

  91. M. Radosz, A. Lydersen, Chem. Ing. Tech. CIT 52, 756 (1980)

    Article  Google Scholar 

  92. B.C. Oh, S. Lee, J. Seo, H. Kim, J. Chem. Eng. Data 49, 221 (2004)

    Article  Google Scholar 

  93. R. Fischer, Mikrochem 31, 102 (1944)

    Article  Google Scholar 

  94. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013)

    Article  ADS  Google Scholar 

  95. D.M. Saul, M. Wortis, D. Jasnow, Phys. Rev. B 11, 2571 (1975)

    Article  ADS  Google Scholar 

  96. R. Guida, S. Zinn-Justin, J. Phys. A 31, 8103 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  97. J. Wang, M.A. Anisimov, Phys. Rev. E 75, 051107–051111 (2007)

    Article  ADS  Google Scholar 

  98. M.E. Fisher, G. Orkoulas, Phys. Rev. 85, 696 (2000)

    ADS  Google Scholar 

  99. G. Orkoulas, M.E. Fisher, C. Ustün, J. Chem. Phys. 113, 7530 (2000)

    Article  ADS  Google Scholar 

  100. F.J. Wegner, Phys. Rev. B 5, 4529 (1972)

    Article  ADS  Google Scholar 

  101. M. Ley-Koo, M.S. Green, Phys. Rev. A 23, 2650 (1981)

    Article  ADS  Google Scholar 

  102. N.G. Polikhronidi, G.V. Stepanov, I.M. Abdulagatov, R.G. Batyrova, Thermochim. Acta 454, 99 (2007)

    Article  Google Scholar 

  103. D. Ambrose, C.H.S. Sprake, J. Chem. Thermodyn. 2, 631 (1970)

    Article  Google Scholar 

  104. P.T. Ngema, D. Matkowska, P. Naidoo, T. Hofman, D. Ramjugernath, J. Chem. Eng. Data 57, 2053 (2012)

    Article  Google Scholar 

  105. A.B. Pereiro, A. Rodriguez, J. Canosa, J. Tojo, J. Chem. Thermodyn. 37, 249 (2005)

    Article  Google Scholar 

  106. F. Barr-David, B.F. Dodge, J. Chem. Eng. Data 4, 107 (1959)

    Article  Google Scholar 

  107. A. Wilson, E.L. Simons, Ind. Eng. Chem. 44, 2214 (1952)

    Article  Google Scholar 

  108. E. Sada, T. Morisue, J. Chem. Eng. Jpn 8, 191 (1975)

    Article  Google Scholar 

  109. J.L. Hales, J.H. Ellender, J. Chem. Thermodyn. 8, 1177 (1976)

    Article  Google Scholar 

  110. W.J. Camp, J.P. Van Dyke, Phys. Rev. B 11, 2579 (1975)

    Article  ADS  Google Scholar 

  111. F. Vesely, L. Svab, R. Provaznik, V. Svoboda, J. Chem. Thermodyn. 20, 981 (1988)

    Article  Google Scholar 

  112. N.S. Berman, C.W. Larkam, J.J. McKetta, J. Chem. Eng. Data 9, 218 (1964)

    Article  Google Scholar 

  113. D. Ambrose, Vapor-liquid critical properties. Natl. Phys. Lab. Rep. Chem. 1980, 102 (1980)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation of Basic Research (RFBR) Grants No. 19-08-00056 and No 18-08-00500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polikhronidi, N.G., Batyrova, R.G., Wu, J. et al. PVT and Thermal-Pressure Coefficient Measurements and Derived Thermodynamic Properties of 2-Propanol in the Critical and Supercritical Regions. Int J Thermophys 41, 92 (2020). https://doi.org/10.1007/s10765-020-02672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02672-1

Keywords

Navigation