Skip to main content
Log in

Neuro-Fuzzy Technique for Micro-hardness Evaluation of Explosive Welded Joints

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research work, aluminium with low-carbon steel was joined through the explosive welding process at different loading ratios. The high impact pressure caused by explosive energy at the weld interface results in increase in hardness value. This hardness property plays an important role, as it affects the mechanical properties of welded plates. A model based on an intelligent technique named adaptive network-based fuzzy inference system (ANFIS) has been developed to predict the various micro-hardness values across the weld interface of explosive welded plates. The obtained experimental data were utilized for training and testing of the ANFIS model to predict micro-hardness values. The developed model was used on both sides of the weld interface, i.e. aluminium and steel. The model performance evaluations were carried out using different statistical criteria such as cross-correlation, mean absolute percentage error (MAPE) and root-mean-square error (RMSE). In comparison with aluminium, the steel side showed good results with a value of adj. R-square (0.95955) when compared to that in aluminium (0.85343). This observation was also supported by MAPE and RMSE data. The experimentally obtained micro-hardness values were found to be in good agreement with predicted ones through the ANFIS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Findik F, Mater Des32 (2011) 1081.

    Article  CAS  Google Scholar 

  2. Carvalho G H S F L, Galvão I, Mendes R, Leal R M, and Loureiro A, Mater Charact155 (2019) 109819.

    Article  CAS  Google Scholar 

  3. Chen J, Yuan X, Hu Z, Li T, Wu K, and Li C, J Manuf Process30 (2017) 396.

    Article  Google Scholar 

  4. Qiu R, Iwamoto C, and Satonaka S, J Mater Process Technol209 (2009) 4186.

    Article  CAS  Google Scholar 

  5. Yu H, Dang H, and Qiu Y, J Mater Process Technol250 (2017) 297.

    Article  CAS  Google Scholar 

  6. Yu H, and Tong Y, Int J Adv Manuf Technol91 (2017) 2257.

    Article  Google Scholar 

  7. Crossland B, McKee F, and Szecket A, in High-Pressure Science and Technology, Springer, Berlin (1979), p 1837.

    Chapter  Google Scholar 

  8. Sherpa B B, Kumar P D, Upadhyay A, Batra U, and Agarwal A, Adv Appl Phys Chem Sci Sustain Approach (2014) 33.

  9. Acarer M, Gülenç B, and Findik F, Mater Des24 (2003) 659.

    Article  CAS  Google Scholar 

  10. Kahraman N, Gülenç B, and Findik F, J Mater Process Technol169 (2005) 127.

    Article  CAS  Google Scholar 

  11. Kim D, Rhee S, and Park H, Int J Prod Res40 (2002) 1699.

    Article  Google Scholar 

  12. Singh S B, Bhadeshia H K D H, MacKay D J C, Carey H, and Martin I, Ironmak Steelmak25 (1998) 355.

    CAS  Google Scholar 

  13. Almonacid F, Fernandez E F, Mellit A, and Kalogirou S, Renew Sustain Energy Rev75 (2017) 938.

    Article  Google Scholar 

  14. Kim I S, Son J S, Lee S H, and Yarlagadda P K, Robot Comput Integr Manuf20 (2004) 57.

    Article  Google Scholar 

  15. Anand K, Barik B K, Tamilmannan K, and Sathiya P, Eng Sci Technol Int J18 (2015) 394.

    Google Scholar 

  16. Gupta S K, Pandey K, and Kumar R, Proc Inst Mech Eng Part L J Mater Des Appl232 (2018) 333.

    CAS  Google Scholar 

  17. Ross T J, Fuzzy Logic with Engineering Applications, Wiley, Hoboken (2005).

    Google Scholar 

  18. Yetilmezsoy K, Erhuy C G, Ates F, and Bilgin M B, J Braz Soc Mech Sci Eng40 (2018) 283.

    Article  Google Scholar 

  19. Kuo H-C, and Wu L-J, J Mater Process Technol120 (2002) 169.

    Article  CAS  Google Scholar 

  20. Naso D, Turchiano B, and Pantaleo P, IEEE Trans Ind Inf1 (2005) 259.

    Article  Google Scholar 

  21. Aghakhani M, Ghaderi M R, Karami A, and Derakhshan A A, Int J Adv Manuf Technol70 (2014) 63.

    Article  Google Scholar 

  22. Wang L-X, in IEEE International Conference on Fuzzy Systems, IEEE (1992).

  23. Avci E, Appl Soft Comput8 (2008) 225.

    Article  Google Scholar 

  24. Jang J-S, IEEE Trans Syst Man Cybern23 (1993) 665.

    Article  Google Scholar 

  25. Ying L-C, and Pan M-C, Energy Convers Manag49 (2008) 205.

    Article  Google Scholar 

  26. Lin C-T, Lee C S G, IEEE Trans Comput 40 (1991) 1320.

    Article  Google Scholar 

  27. Buragohain M, and Mahanta C, Appl Soft Comput8 (2008) 609.

    Article  Google Scholar 

  28. Kahraman N, and Gülenç B, J Mater Process Technol169 (2005) 67.

    Article  CAS  Google Scholar 

  29. Mousavi S A, and Sartangi P F, Mater Des30 (2009) 459.

    Article  Google Scholar 

  30. Gloc M, Wachowski M, Plocinski T, and Kurzydlowski K J, J Alloys Compd671 (2016) 446.

    Article  CAS  Google Scholar 

  31. Chen P, Feng J, Zhou Q, An E, Li J, Yuan Y, and Ou S, J Mater Eng Perform25 (2016) 2635.

    Article  CAS  Google Scholar 

  32. Xia H-B, Wang S-G, Ben H-F, Mater Des 1980201556 (2014) 1014.

    CAS  Google Scholar 

  33. Karakus M, and Tutmez B, Rock Mech Rock Eng39 (2006) 45.

    Article  Google Scholar 

  34. SinghT N, Kanchan R, Verma A K, and Saigal K, J Earth Syst Sci114 (2005) 75.

    Article  Google Scholar 

  35. Dewan M W, Huggett D J, Liao T W, Wahab M A, and Okeil A M, Mater Des92 (2016) 288.

    Article  CAS  Google Scholar 

  36. Singh R, Kainthola A, and Singh T, Appl Soft Comput12 (2012) 40.

    Article  Google Scholar 

  37. Tzamos S, and Sofianos A, Int J R Mech Min Sci43 (2006) 938.

    Article  Google Scholar 

Download references

Acknowledgements

The support from the Terminal Ballistics Research Laboratory is highly acknowledged. The authors are very thankful to Dr. Manjit Singh, Director, TBRL, sector-30 Chandigarh. Thanks also go to all the scientists and staff of MEMWD and EED of TBRL for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bir Bahadur Sherpa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherpa, B.B., Kumar, P.D., Upadhyay, A. et al. Neuro-Fuzzy Technique for Micro-hardness Evaluation of Explosive Welded Joints. Trans Indian Inst Met 73, 1287–1299 (2020). https://doi.org/10.1007/s12666-020-01980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01980-2

Keywords

Navigation