Skip to main content
Log in

Periodization, Transference of Muckenhoupt Weights, and Automatic Tight Norm Estimates for the Periodic Hilbert Transform

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For \(\alpha \in {\mathbb {R}}\), let \(W_{\alpha }\) (respectively, \(w_{\alpha }\)) be the corresponding power weight function on \({\mathbb {R}}\) (respectively, the corresponding periodic power weight function, also defined on \({\mathbb {R}} \)). It is known that \(W_{\alpha }\) (respectively, \(w_{\alpha }\)) belongs to \(A_{1}\left( {\mathbb {R}}\right) \) (respectively, \(A_{1}\left( {\mathbb {T}} \right) \)) if and only if \(-1<\alpha \le 0\), and that if \(1<p<\infty \), then \(W_{\alpha }\) (respectively, \(w_{\alpha }\)) belongs to \(A_{p}\left( {\mathbb {R}}\right) \) (respectively, to \(A_{p}\left( {\mathbb {T}}\right) \)) if and only if \(-1<\alpha <p-1\). In recent times, it has been shown that for \(1<p<\infty \), the power weights \(W_{\alpha }\) can be used in the course of determining the sharpest upper bounds (in terms of exponents of \(A_{p}\) weight norms) for all operator norms of the Hilbert transform H acting on \(L^{p}\left( {\mathbb {R}},\omega \right) \), as \(\omega \) runs through \(A_{p}\left( {\mathbb {R}}\right) \). This note provides the analogous results for the periodic Hilbert transform \({\widetilde{H}}\) acting on all \(A_{p}\left( {\mathbb {T}}\right) \) weighted \(L^{p}\) spaces of \({\mathbb {T}}\). These corresponding results are arrived at through appropriate transference techniques aimed at establishing the corresponding upper estimates for the periodic Hilbert transform \({\widetilde{H}}\) within the framework of all \(A_{p}\left( {\mathbb {T}}\right) \) weights; thereafter appropriate weights \(w_{\alpha }\in A_{p}\left( {\mathbb {T}}\right) \) can be singled out from the mix in order to obtain the desired sharpness results from these upper estimates. To illustrate the flexibility of the methods involved in this process, we describe how they can furnish even tighter forms of upper estimates (involving \(A_{\infty }\left( {\mathbb {R}}\right) \) weight characteristics) for \(\left\| {\widetilde{H}}\right\| _{{\mathfrak {B}} \left( L^{p}\left( {\mathbb {T}},w\right) \right) }\) in the framework of all weights \(w\in A_{p}\left( {\mathbb {T}}\right) \). We close with a section devoted to the fine structure of a general periodization process for even \(A_{p}\left( {\mathbb {R}}\right) \) weights, thereby establishing a ubiquitous presence of \(A_{p}\left( {\mathbb {T}}\right) \) weights. Our methods can also treat Calderón–Zygmund operators in weighted multivariable settings. However, this article focuses its main attention on norms of Hilbert transforms in the framework of weighted spaces based on \({\mathbb {R}}\) and \({\mathbb {T}}\) in order to examine how Calderón–Coifman–G. Weiss transference methods can expand to cover tight \(A_{p}\left( {\mathbb {R}} \right) -A_{\infty }\left( {\mathbb {R}}\right) \) operator bounds in the arena of classical weighted settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, K.F., Mohanty, P.: Restriction and extension of Fourier multipliers between weighted \(L^{p}\) spaces on \({\mathbb{R}}^{n}\) and \({\mathbb{T}}^{n}\). Proc. Am. Math. Soc. 137, 1689–1697 (2009)

    Article  Google Scholar 

  2. Anderson, T.C.: A Framework for Calderón–Zygmund Singular Integral Operators on Spaces of Homogeneous Type. Brown University, Providence, Rhode Island, Thesis (2015)

  3. Berkson, E., Gillespie, T.A.: Multipliers for weighted \(L^{p}\)-spaces, transference, and the q-variation of functions. Bull. Sci. Math. 122, 427–454 (1998)

    Article  MathSciNet  Google Scholar 

  4. Berkson, E., Gillespie, T.A.: On restrictions of multipliers in weighted settings. Indiana Univ. Math. J. 52, 927–961 (2003)

    Article  MathSciNet  Google Scholar 

  5. Buckley, S. M.: “Harmonic Analysis on Weighted Spaces,” Thesis, University of Chicago (1990) (written under the guidance of Professor Robert Fefferman)

  6. Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340, 253–272 (1993)

    Article  MathSciNet  Google Scholar 

  7. Calderón, A.P.: Ergodic theory and translation-invariant operators. Proc. Natl. Acad. Sci. (USA) 59, 349–353 (1968)

    Article  MathSciNet  Google Scholar 

  8. Coifman, R., Jones, P.W., Rubio de Francia, J.L.: Constructive decomposition of BMO functions and factorization of \(A_{p}\) weights. Proc. Am. Math. Soc 87, 675–676 (1983)

    MATH  Google Scholar 

  9. Coifman, R.R., Weiss, G. : Analyse harmonique non-commutative sur certains espaces homogènes. Étude de certaines intégrales singulières, Lecture Notes in Mathematics 242. Springer-Verlag, Berlin-New York (1971)

  10. Coifman, R.R., Weiss, G.: Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers. Studia Math. 47, 285–303 (1973)

    Article  MathSciNet  Google Scholar 

  11. Coifman, R.R., Weiss, G.: “Transference Methods in Analysis”, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. American Mathematical Society, Providence R.I. (1976) (reprinted 1986)

  12. Dragičević, O., Grafakos, L., Pereyra, M.C., Petermichl, S.: Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces. Publ. Mat. 49, 73–91 (2005)

    Article  MathSciNet  Google Scholar 

  13. Duoandikoetxea, J.: “Fourier Analysis”. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. Graduate Studies in Mathematics 29, American Mathematical Society, Providence (2001)

  14. Duoandikoetxea, J.: Extrapolation of weights revisited: new proofs and sharp bounds. J. Funct. Anal. 260, 1886–1901 (2011)

    Article  MathSciNet  Google Scholar 

  15. Duoandikoetxea, J. Forty years of Muckenhoupt weights. In: Lukes, J., Pick, L. (eds.) Conference: Spring School on Analysis Paseky 2013 a Paseky, Lecture Notes Paseky nad Jizerou 2013. Matfyzpress, Praga, pp. 23–75 (2013)

  16. Fefferman, C.: On the convergence of multiple Fourier series. Bull. Am. Math. Soc. 77, 744–745 (1971)

    Article  MathSciNet  Google Scholar 

  17. García-Cuerva, J., Rubio de Francia, J.L.: “Weighted Norm Inequalities and Related Topics”, North Holland Mathematics Studies 116=Notas de Matemática (104). Elsevier Science Publ, New York (1985)

  18. Hao, C. Introduction to Harmonic Analysis: Lecture Notes. Institute of Mathematics, Chinese Academy of Sciences, Beijing, China (2016). http://www.math.ac.cn/kyry/hcc/hccteach/201512/P020160419726438768934.pdf

  19. Hunt, R., Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    Article  MathSciNet  Google Scholar 

  20. Hytönen, T.P.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. 175, 1473–1506 (2012)

    Article  MathSciNet  Google Scholar 

  21. Hytönen, T., Lacey, M.T.: The \(A_{p}-A_{\infty }\) inequality for general Calderón-Zygmund operators. Indiana Univ. Math. J. 61, 2041–2052 (2012)

    Article  MathSciNet  Google Scholar 

  22. Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_{\infty }\). Anal. PDE 6, 777–818 (2013)

    Article  MathSciNet  Google Scholar 

  23. Jones, P.W.: Factorization of \(A_{p}\) weights. Ann. Math. 111, 511–530 (1980)

    Article  MathSciNet  Google Scholar 

  24. Kenig, C.E., Tomas, P.A.: Maximal operators defined by Fourier multipliers. Studia Math. 68, 79–83 (1980)

    Article  MathSciNet  Google Scholar 

  25. Lacey, M.T.: An \(A_{p}-A_{\infty }\) inequality for the Hilbert transform. Houston J. Math. 38, 799–814 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Petermichl, S.: The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_{p}\) characteristic. Am. J. Math. 129, 1355–1375 (2007)

    Article  Google Scholar 

  27. Riesz, M.: Sur les fonctions conjuguées. Math. Z. 27, 218–244 (1928)

    Article  MathSciNet  Google Scholar 

  28. Stein, E.: “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton Mathematical Series 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

  29. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  30. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123. Academic Press, Orlando (1986)

    MATH  Google Scholar 

  31. Zygmund, A.: “Trigonometric Series, Third Edition: Volumes I (2002) and II (Reprinted 1977) Combined”, Cambridge University Press, Cambridge

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl Berkson.

Additional information

Dedicated to the illustrious mathematician Guido Weiss, whose diverse list of leading roles includes being: the “father of the mathematical atomic and molecular theories”; a co-founder of transference methods and of the study of homogeneous spaces; and a pioneer of wavelet theory—a truly inspirational trailblazer and mentor, with an unquenchable generosity of spirit, AND a corresponding worldwide legion of appreciative friends, colleagues, postdocs, and students. .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkson, E. Periodization, Transference of Muckenhoupt Weights, and Automatic Tight Norm Estimates for the Periodic Hilbert Transform. J Geom Anal 31, 8780–8831 (2021). https://doi.org/10.1007/s12220-020-00405-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00405-2

Keywords

Mathematics Subject Classification

Navigation