Skip to main content
Log in

The Three-party Quantum Key Agreement Protocol with Quantum Fourier Transform

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum key agreement(QKA) is an important part of quantum cryptography. In QKA, the final shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. In this scheme, a novel three-party QKA with quantum fourier transform(QFT) is proposed. In addition, we utilize random numbers, decoy states and a hash function to make this protocol be resistant external attacks and participant attacks. Furthermore, the scheme can meet fairness i.e. each participant contributes fairly and equally to the final key.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New directions in crypography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  Google Scholar 

  2. Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–719 (1982)

    Article  MathSciNet  Google Scholar 

  3. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamiac peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)

    Article  Google Scholar 

  4. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. Advances in Cryptology-EUROCRYPT 1994. Lecture Notes in Computer Science 950, 275–286 (1994)

    MATH  Google Scholar 

  5. Xiao, D, Liao, X, Deng, S.: A novel key agreement protocol based on chaotic maps. Inf. Sci. 177(4), 1136–1142 (2007)

    Article  MathSciNet  Google Scholar 

  6. Han, S.: Security of a key agreement protocol based on chaotic maps. Chaos Soliton. Fract. 38(3), 764–768 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Xiang, T, Wong, K, Liao, X.: On the security of a novel key agreement protocol based on chaotic maps. Chaos Soliton. Fract. 40(2), 672–675 (2009)

    Article  ADS  Google Scholar 

  8. He, D, Chen, Y, Chen, J.: Cryptanalysis and improvement of an extended chaotic maps-based key agreement protocol. Nonlinear Dyn. 69, 1149–1157 (2012)

    Article  MathSciNet  Google Scholar 

  9. Tan, Z.: A chaotic maps-based authenticated key agreement protocol with strong anonymity. Nonlinear Dyn. 72, 311–32 (2013)

    Article  MathSciNet  Google Scholar 

  10. Xie, Q, Zhao, JM, Yu, X.Y.: Chaotic maps-based three-party password authenticated key scheme. Nonlinear Dyn. 74, 1021–1027 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wang, X, Zhao, J.: An improved key agreement protocol based on chaos. Communications in Nonlinear Science and Numerical Simulation 15, 4052–4057 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundation of Computer Science, Los Alamitos, pp. 124–134 (1994)

  13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, pp. 212–219 (1996)

  14. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signatureagainst the forgery attack. Quantum Inf. Process. 12, 2655–2669 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12, 3127–3141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhang, K.J., Zhang, X., Jia, H.Y., Long, Z.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18, 81 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yang, Y.H., Yuan, J.T., Wang, C.H., Geng, S.J., Zuo, H.J.: Locally indistinguishable generalized Bell states with one-way local operations and classical communication. Phys. Rev. A 98, 042333 (2018)

    Article  ADS  Google Scholar 

  18. Yang, Y.H., Wang, C.H., Yuan, J.T., Wu, X., Zuo, H.J.: Local distinguishability of generalized Bell states. Quantum Inf. Process. 17, 29 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  ADS  Google Scholar 

  21. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, pp 236–242. National Taiwan University of Science and Technology, Taipei (2004)

  22. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on Quantum key agreement protocol with maximally entangled state. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  23. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference, pp 210–213. National Chiao Tung University, Hsinchu (2010)

  24. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  25. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  26. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurement. Quantum Inf. Process 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multi-party quantum key agreement with single particles. Quantum Inf. Process 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on multi-party quantum key agreement with single particles. Quantum Inf. Process 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Sun, Z.W., Yu, J.P.: Wang, P.:Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process 15, 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  31. Gu, J., Hwang, T.: Improvement of Novel multi-party quantum key agreement protocol with GHZ states. Int. J. Theor. Phys. 56, 3108–3116 (2017)

    Article  Google Scholar 

  32. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement with teleporation. Mod. Phys. Lett. B 31, 1750102 (2017)

    Article  ADS  Google Scholar 

  33. Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process 16, 170 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol single particles. Quantum Inf. Process 13, 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 55, 1–7 (2016)

    Article  Google Scholar 

  36. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  37. Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with g-like states and bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)

    Article  MathSciNet  Google Scholar 

  38. Wang, SS, Xu, GB, Liang, X.Q., et al.: Multiparty quantum key agreement with four-qubit symmetric W state. Int. J. Theor. Phys. 57(12), 3716–3726 (2018)

    Article  MathSciNet  Google Scholar 

  39. Cai, T, Jiang, M, Cao, G.: Multiparty quantum key agreement with five-qubit brown states. Quantum Inf. Process. 17(5), 103 (2018)

    Article  ADS  Google Scholar 

  40. Diao, Z.J., Huang, C.F., Wang, K.: Quantum counting: algorithm and error distribution. Acta Appl Math. 118, 147–159 (2012)

    Article  MathSciNet  Google Scholar 

  41. Wang, Q.L., Yu, C.H., Gao, F., Qi, H.Y., Wen, Q.Y.: Self-tallying quantum anonymous voting. Phys. Rev. A 94, 022333 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 61802118, Open Foundation of State key Laboratory of Networking and Switching Technology (BUPT) under Grant No. SKLNST-2018-1-07, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province under Grant No. UNPYSCT-2018015 , Hei Long Jiang Postdoctoral Foundation under Grant No.LBH-Z17048 and Natural Science Foundation of Heilongjiang Province under Grant No.LH2019F031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhou, BM. & Zhang, L. The Three-party Quantum Key Agreement Protocol with Quantum Fourier Transform. Int J Theor Phys 59, 1944–1955 (2020). https://doi.org/10.1007/s10773-020-04467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04467-4

Keywords

Navigation