Skip to main content

Advertisement

Log in

Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akinbowale OL, Peng H, Grant P, Barton MD (2007) Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Int J Antimicrob Agents 30(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259

    Article  CAS  PubMed  Google Scholar 

  • Allmansberger R, Bräu B, Piepersberg W (1985) Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. Mol Gen Genet 198(3):514–520

  • Amábile-Cuevas CF (2016) Antibiotics and antibiotic resistance in the environment. CRC Press/Balkema, Leiden, p 133

    Google Scholar 

  • Amachawadi RG, Shelton NW, Shi X et al (2011) Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper. Appl Environ Microbiol 77(16):5597–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arun S, Mukhopadhyay M, Chakraborty P (2017) A review on antibiotics consumption, physico-chemical properties and their sources in Asian soil. In: Hashmi MZ, Strezov V, Varma A (eds) Antibiotics and antibiotics resistance genes in soils. Soil biology, vol 51. https://doi.org/10.1007/978-3-319-66260-2_1. Springer, New York

  • Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi Z, Berglund B, Sun Q et al (2017) Prevalence of the mcr-1 colistin resistance gene in extended-spectrum beta-lactamase-producing Escherichia coli from human faecal samples collected in 2012 in rural villages in Shandong Province, China. Int J Antimicrob Agents 49(4):493–497

    Article  CAS  PubMed  Google Scholar 

  • Blanco P, Hernando-Amado S, Reales-Calderon JA et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4(1):4

    Article  CAS  Google Scholar 

  • Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29(6):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonomo RA (2017) β-Lactamases: a focus on current challenges. Cold Spring Harb Perspect Med 7:a025239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campos J, Cristino L, Peixe L, Antunes P (2016) MCR-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Eurosurveillance 21(26)

  • Cantón R, Ruiz-Garbajosa P (2011) Co-resistance: an opportunity for the bacteria and resistance genes. Curr Opin Pharmacol 11:477–485

    Article  PubMed  CAS  Google Scholar 

  • Cardoso M, Schwarz S (1992) Chloramphenicol resistance plasmids in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Microbiol 30(2–3):223–232

    Article  CAS  PubMed  Google Scholar 

  • Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE (2011) Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY antimicrobial surveillance program, 2006–2007. Antimicrob Agents Chemother 55:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Catry B, Cavaleri M, Baptiste K et al (2015) Use of colistin-containing products within the European Union and European economic area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 46(3):297–306

    Article  CAS  PubMed  Google Scholar 

  • Cavaco LM, Hasman H, Aarestrup FM (2011) Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol 150(3–4):344–348

    Article  CAS  PubMed  Google Scholar 

  • Cavaco LM, Hasman H, Stegger M et al (2010) Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates. Antimicrob Agents Chemother 54(9):3605–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra N, Kumar S (2017) Antibiotics producing soil microorganisms. In: Hashmi MZ, Strezov V, Varma A (eds) Antibiotics and antibiotics resistance genes in soils. Soil biology, vol 51. https://doi.org/10.1007/978-3-319-66260-2_1. Springer, New York

  • Cheng J, Hicks DB, Kruwlich TA (1996) The purified Bacillus subtilis tetracycline efflux protein TetA(L) reconstitutes both tetracycline–cobalt/H+ and Na+(K+)/H+ exchange. Proc Natl Acad Sci USA 93(25):14446–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates K, Walsh TR, Spencer J, Hinchliffe P (2017) 1.12 A resolution crystal structure of the catalytic domain of the plasmid-mediated colistin resistance determinant MCR-2. Acta Crystallogr F Struct Biol Commun 73 (Pt 8):443–449

  • Cochetti I, Tili E, Mingoia M, Varaldo PE, Montanari MP (2008) Erm(b)-carrying elements in tetracycline-resistant pneumococci and correspondence between Tn1545 and Tn6003. Antimicrob Agents Chemother 52:1285–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collignon P, Athukorala P, Senanayake S, Khan F (2015) Antimicrobial resistance: the major contribution of poor governance and corruption to this growing problem. PLoS ONE 10:e0116746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darley E, Weeks J, Jones L, Daniels V, Wootton M, MacGowan A, Walsh T (2012) NDM-1 polymicrobial infections including Vibrio cholerae. Lancet 380:1358

    Article  PubMed  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durso LM, Wedin DA, Gilley JE, Miller DN, Marx DB (2016) Assessment of selected antibiotic resistances in ungrazed native Nebraska prairie soils. J Environ Qual 45(2):454–462

    Article  CAS  PubMed  Google Scholar 

  • Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C (2018) Tackling the antibiotic resistance caused by class A β-lactamases through the use of β-lactamase inhibitory protein. Int J Mol Sci 19(8):2222

    Article  PubMed Central  CAS  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa aresenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 9(2):125–132

  • Fang L, Li X, Li L et al (2016) Co-spread of metal and antibiotic resistance within ST3-IncH12 plasmids from E. coli isolates of food-producing animals. Sci Rep 6:25312

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  CAS  PubMed  Google Scholar 

  • Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galopin S, Cattoir V, Leclercq R (2009) A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii. FEMS Microbiol Lett 296(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Hu Y, Li Z et al (2016) Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog 12(11):e1005957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grady R, Hayes F (2003) Axe-Txe, a broad-spectrum proteic toxin–antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol 47(5):1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Grossman TH (2016) Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med 6(4):a025387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI (2014) Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 5(5):e01918.14

  • Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B (2014) Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112:1–8

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Vlamakis H, Shoemaker N, Salyers AA (2003) A new bacteroides conjugative transposon that carries an erm(b) gene. Appl Environ Microbiol 69:6455–6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58(1):212–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habeeb MA, Haque A, Iversen A, Giske CG (2014) Occurrence of virulence genes, 16S rRNA methylases, and plasmid-mediated quinolone resistance genes in CTXM-producing Escherichia coli from Pakistan. Eur J Clin Microbiol Infect Dis 33:399–409

    Article  CAS  PubMed  Google Scholar 

  • Haenni M, Beyrouthy R, Lupo A, Chatre P, Madec JY, Bonnet R (2017) Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J Antimicrob Chemother 73(2):533–536

    Article  PubMed Central  CAS  Google Scholar 

  • Hamlett NV, Landale EC, Davis BH, Summers AO (1992) Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J Bacteriol 174:6377–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen LH, Jensen LB, Sorensen HI, Sorensen SJ (2007) Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60:145–147

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Li X, Pal C et al (2017) Widespread resistance to arsenic in bacteria is influenced by its use in protists to kill bacterial prey. Biometals. https://doi.org/10.1007/s10534-017-0003-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao X, Lűthje F, Rønn R et al (2016) A role for copper in protozoan grazing—two billion years selecting for bacterial copper resistance. Mol Microbiol 102(4):628–641

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Lűthje FL, QinY et al. (2015) Survival in amoeba—a major selective pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a “copper pathogenicity island”. Appl Microbiol Biotechnol 99(14):5817–5824

  • Hasman H, Aarestrup FM (2002) TcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 48(5):1410–1416

    Article  CAS  Google Scholar 

  • Hassan MT, van der Lelie D, Springael D, Romling U, Ahmed N, Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238:417–425

    Article  CAS  PubMed  Google Scholar 

  • Ho PL, Ng KY, LoWU LPY, Lai EL, Wang Y, Chow KH (2016) Plasmid-mediated OqxAB is an important mechanism for nitrofurantoin resistance in Escherichia coli. Antimicrob Agents Chemother 60:537–543

    Article  CAS  PubMed  Google Scholar 

  • Hobman JL, Crossman LC (2014) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64:471–497

    Article  PubMed  CAS  Google Scholar 

  • Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Hooper GC, Jacoby GA (2016) Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopwood DA (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Guo J, Cheng Q et al (2016) Crystal structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for colistin resistance. Sci Rep 6:38793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby GA, Strahilevitz J, Hooper DC (2014) Plasmid-mediated quinolone resistance. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0006-2013

    Article  PubMed  Google Scholar 

  • Jenner L, Starosta AL, Terry DS et al (2013) Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc Natl Acad Sci USA 110:3812–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones LS, Toleman MA, Weeks JL, Howe RA, Walsh TR, Kumarasamy KK (2014) Plasmid carriage of bla NDM-1 in clinical Acinetobacter baumannii isolates from India. Antimicrob Agents Chemother 58:4211–4213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals. Soil biology, vol 19. https://doi.org/10.1007/978-3-642-02436-8_3. Springer, Berlin

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601–602:1591–1605

    Article  PubMed  CAS  Google Scholar 

  • Knapp CW, McCluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS ONE 6(11):e27300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobashi Y, Hasebe A, Nishio M, Uchiyama H (2007) Diversity of tetracycline resistance genes in bacteria isolated from various agricultural environments. Microbes Environ 22(1):44–51

    Article  Google Scholar 

  • Leonard DA, Bonomo RA, Powers RA (2013) Class D β-lactamases: a reappraisal after five decades. Acc Chem Res 46:2407–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-X, Zhong Z, Hou P, Zhang W-P, Qian P-Y (2018) Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. Nat Chem Biol 14:381–387

    Article  CAS  PubMed  Google Scholar 

  • Litrup E, Kiil K, Hammerum AM, Roer L, Nielsen EM, Torpdahl M (2017) Plasmid-borne colistin resistance gene mcr-3 in Salmonella isolates from human infections, Denmark, 2009–17. Euro Surveill 22(31)

  • Liu T, Ramesh A, Ma Z et al (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Zhu Y, Yu Z, Ahmad A, Zhang H (2016) High resolution crystal structure of the catalytic domain of MCR-1. Sci Rep 6:39540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack S, Xu Y, Nodwell JR (2014) The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol Microbiol 93:391–402

    Article  CAS  Google Scholar 

  • Markley JL, Wencewicz TA (2018) Tetracycline-inactivating enzymes Front Microbiol 9:1058

    PubMed  Google Scholar 

  • Marosevic D, Kaevska M, Jaglic Z (2017) Resistance to the tetracyclines and macrolide-lincosamide-streptogramin group of antibiotics and its genetic linkage- a review. Ann Agric Environ Med 24(2):338–344

    Article  CAS  PubMed  Google Scholar 

  • Martin MF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43:173–206

    Article  CAS  PubMed  Google Scholar 

  • Mata MT, Baquero F, Perez-Dıaz JC (2000) A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol Lett 187(2):185–188

    Article  CAS  PubMed  Google Scholar 

  • McArthur AG, Waglechner N, Nizam F et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57(7):3348–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mindlin S, Petrova M (2013) Mercury resistance transposons. In: Roberts AP, Mullany P (eds) Bacterial integrative mobile genetic elements. Landes Bioscience, Texas, pp 33–52

    Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R et al (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152(6):1765–1776

    Article  CAS  PubMed  Google Scholar 

  • Mourao J, Novais C, Machado J, Peixe L, Antunes P (2015) Metal tolerance in emerging clinically relevant multi-drug resistant Salmonella enterica serotype 4, [5], 12:i:- clones circulating in Europe. Int J Antimicrob Agents 45(6):610–616

    Article  CAS  PubMed  Google Scholar 

  • Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E (1996) A TEM-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40(11):2488–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182(20):5864–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray IA, Shaw WV (1997) O-acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 41(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemergut DR, Martin AP, Schmidt SK (2004) Integron diversity in heavy metal contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70(2):1160–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NQ, Krishnan NP, Rojas LJ, Prati F, Caselli E, Romagnoli C, Bonomo RA, van den Akker F (2016) Crystal structures of KPC-2 and SHV-1 β-lactamases in complex with the boronic acid transition state analog S02030. Antimicrob Agents Chemother 60:1760–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2003a) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oregaard G, Sorensen SJ (2007) High diversity of bacterial mercuric reductase genes from surface and subsurface floodplain soil (Oak Ridge, USA). ISME J 1:453–467

    Article  CAS  PubMed  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol 19:239–262

    Article  CAS  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276(33):30670–30677

    Article  CAS  PubMed  Google Scholar 

  • Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DGJ, Hobman JL (2017) Metal resistance and its association with antibiotic resistance. Adv Microb Physiol. https://doi.org/10.1016/bs.ampbs.2017.02.001

    Article  PubMed  Google Scholar 

  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2015a) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2015b) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 6:964

    Article  CAS  Google Scholar 

  • Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG (2014) BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 42(database issue):D737–D743

  • Parkhill J, Dougan G, James KD et al (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858):848–852

  • Patel G, Bonomo RA (2013) “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4):657–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28(6):1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Pe´richon B, Courvalin P, Galimand M (2007) Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51:2464–2469

  • Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20:5286–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M (1997) Antibiotic resistance spread in food. Nature 389:801–802

    Article  CAS  PubMed  Google Scholar 

  • Perron K, Caille O, Rossier C, Delden CV, Dumas J, Kohler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279(10):8761–8768

    Article  CAS  PubMed  Google Scholar 

  • Perry JA, Wright GD (2013) The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Projan SJ, Kornblum J, Moghazeh SL, Edelman I, Gennaro ML, Novick RP (1985) Comparative sequence and functional analysis of pT181 and 6221, cognate plasmid replicons from Staphy1ococcus aureus. Mol Gen Genet 199:452–464

    Article  CAS  PubMed  Google Scholar 

  • Quaranta D, McEvoy MM, Rensing C (2009) Site-directed mutagenesis identifies a molecular switch involved in copper sensing by the histidine kinase CinS in Pseudomonas putida KT2440. J Bacteriol 191:5304–5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J (2018) The growing genetic and functional diversity of extended spectrum beta-lactamases. BioMed Res Int 2018 (article ID 9519718)

  • Ramirez MS, Tolmansky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Update 13:151–171

    Article  CAS  Google Scholar 

  • Razavi M, Marathe NP, Gillings MR, Flach C-F, Kristiansson E, Joakim Larsson DG (2017) Discovery of the fourth mobile sulfonamide resistance gene. Microbiome 5:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acid Res 38:20–191

    Article  CAS  Google Scholar 

  • Roberts AP, Mullany P (2011) Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35:856–871

    Article  CAS  PubMed  Google Scholar 

  • Rogers BA, Sidiabat HE, Paterson DL (2011) Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 66(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM (2010) Class 1 integrons in benthic bacterial communities: Abundance, association with Tn402-like transposition modules and evidence for co-selection with heavy metal resistance. FEMS Microbiol Ecol 72(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Rough DA, Lee BTO, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141

    Article  Google Scholar 

  • Sahlman L, Wong W, Powlowski J (1997) A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistance. J Biol Chem 272:29518–29526

    Article  CAS  PubMed  Google Scholar 

  • Salam LB (2018) Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil. Bull Natl Res Center 42:10

    Article  Google Scholar 

  • Salam LB, Ishaq A (2019) Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 9:46

  • Sandaa RA, Torsvik V, Enger O, Daae LF, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28(5):519–542

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Spies U, Cardoso M (1991) Cloning and sequence analysis of a plasmid-encoded chloramphenicol acetyltransferase gene from Staphylococcus intermedius. J Gen Microbiol 137(4):977–981

    Article  CAS  PubMed  Google Scholar 

  • Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:339

    Article  Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57(1):138–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker NB, Vlamakis H, Hayes K, Salyers AA (2001) Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67:561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene-regulation of plasmid-determined and chromosome-determined inorganic ion transport in bacteria. Microbiol Mol Biol Rev 56:195–228

    CAS  Google Scholar 

  • Staehlin BM, Gibbons JG, Rokas A, O’Halloran TV, Slot JC (2016) Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in enterobacteria. Gen Biol Evol 8(3):811–826

    Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH et al (2006) Co-selection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8(9):1510–1514

    Article  CAS  PubMed  Google Scholar 

  • Surette MD, Wright GD (2017) Lessons from the environmental antibiotic resistome. Annu Rev Microbiol 71:309–329

    Article  CAS  PubMed  Google Scholar 

  • Tahlan K, Ahn SK, Sing A, Bodnaruk TD, Willems AR, Davidson AR, Nodwell JR (2007) Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63:951–961

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu D, Osaki M, Sekizaki T (2003) Chloramphenicol resistance transposable element TnSs1 of Streptococcus suis, a transposon flanked by IS6-family elements. Plasmid 49(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SK, Steenbergen J, Villano S (2016) Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic. Bioorg Med Chem 24:6409–6419

    Article  CAS  PubMed  Google Scholar 

  • Tennigkeit J, Matzura H (1991) Nucleotide sequence analysis of a chloramphenicol-resistance determinant from Agrobacterium tumefaciens and identification of its gene product. Gene 98:113–116

    Article  CAS  PubMed  Google Scholar 

  • Toth M, Antunes NT, Stewart NK, Frase H, Bhattacharya M, Smith C, Vakulenko S (2016) Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 12(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ (2000) CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 14(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203

    PubMed  PubMed Central  Google Scholar 

  • Waidner B, Melchers K, Stähler FN, Kist M, Bereswill S (2005) The Helicobacter pylori CrdRS two-component regulation system (HP1364/HP1365) is required for copper-mediated induction of the copper resistance determinant CrdA. J Bacteriol 187:4683–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362

    Article  PubMed  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PP, Sun GX, Zhu YG (2014) Identification and characterization of arsenite methyltransferase from an archaeon Methanosarcina acetivorans C2A. Environ Sci Technol 48:12706–12713

    Article  CAS  PubMed  Google Scholar 

  • Willms IM, Kamran A, Aßmann NF, Krone D, Bolz SH, Fiedler F, Nacke H (2019) Discovery of novel antibiotic resistance determinants in forest and grassland soil metagenomes. Front Microbiol 10:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Wireman J, Liebert CA, Smith T, Summers AO (1997) Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Appl Environ Microbiol 63(11):4494–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu N, Zhang W, Xie S, Zheng M, Liu H, Yang J, Liu X, Yang F (2020) Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China. Front Environ Sci Eng 14:1

    Article  CAS  Google Scholar 

  • Xu Y, Zhong L-L, Srinivas S et al (2018) Spread of MCR-3 colistin resistance in China: an epidemiological, genomic and mechanistic study. EbioMedicine 34:139–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane K, Wachino J, Suzuki S et al (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhanel GG, Cheung D, Adam H et al (2016) Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs 76:67–588

    Google Scholar 

  • Zhao L, Zhang J, Zheng B, Wei Z, Shen P, Li S, Li L, Xiao Y (2015) Molecular epidemiology and genetic diversity of fluoroquinolone-resistant Escherichia coli isolates from patients with community-onset infections in 30 Chinese county hospitals. J Clin Microbiol 53:766–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann M, Udagedara SR, Sze CM et al. (2012) PcoE—a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 115(1):186–197

  • Zhu Y-G, Zhao Y, Gillings M, Prenulas J, Ok YS, Capon A, Banwart S (2019) Soil biota, antimicrobial resistance and planetary health. Environ Int 131:105059

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LBS designed, execute, analyse and wrote the manuscript.

Corresponding author

Correspondence to Lateef Babatunde Salam.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, L.B. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 10, 238 (2020). https://doi.org/10.1007/s13205-020-02219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02219-z

Keywords

Navigation