Skip to main content
Log in

Experimental study of wave propagation characteristics on a simplified coral reef

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The wave transformation over slope topography is widely studied, but most of studies are for common coastal slopes. This paper presents an experimental study of 2-D regular and irregular wave transformations on a simplified coral reef with a steep slope of 1:5 and a horizontal reef flat, focusing on the characteristics of the waves that break on the reef flat. The analyzed results show that the estimates of the wave breaking made by using the well-known previous formulae do not agree completely with the experimental results. When the waves break on a reef flat, the relative breaking wave height (H/d)b is related to the incident deep-water wave steepness and the relative water depth db/L0. Hence, a new criterion for breaking waves on a reef flat is proposed. Furthermore, in view of the fact that the local Ursell number is commonly used to parameterize the wave nonlinearity, the relationships among the skewness, the asymmetry, and the local Ursell number are also presented. Experimental data confirm that when the Ursell number is greater than 30, the absolute values of the skewness and the asymmetry on a reef flat are greater than those on a steep slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lowe R. J., Falter J. L., Bandet M. D. et al. Spectral wave dissipation over a barrier reef [J]. Journal of Geophysical Research, 2005, 110 (C4): C04001.

    Article  Google Scholar 

  2. Roeber V., Bricker J. D. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan [J]. Nature Communications, 2015, 6: 7854.

    Article  Google Scholar 

  3. Lentz S. J., Churchill J. H., Davis K. A. et al. Surface gravity wave transformation across a platform coral reef in the Red Sea [J]. Journal of Geophysical Research Oceans, 2016, 121(1): 693–705.

    Article  Google Scholar 

  4. Lentz S. J., Churchill J. H., Davis K. A. et al. The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea [J]. Journal of Geophysical Research Oceans, 2016, 121(2): 1360–1376.

    Article  Google Scholar 

  5. Zhang S. J., Zhu L. S., Zou K. A comparative study of numerical models for wave propagation and setup on steep coral reefs [J]. China Ocean Engineering, 2019, 33(4): 424–435.

    Article  Google Scholar 

  6. Goda Y. Reanalysis of regular and random breaking wave statistics [J]. Coastal Engineering Journal, 2010, 52(1): 71–106.

    Article  Google Scholar 

  7. Kamphuis J. W. Incipient wave breaking [J]. Coastal Engineering, 1991, 15: 185–203.

    Article  Google Scholar 

  8. Rattanapitikon W., Shibayama T. Estimation of shallow water representative wave heights [J]. Costal Engineering Journal, 2007, 49(3): 291–310.

    Article  Google Scholar 

  9. Dally W. R., Dean R. G., Dalrymple R. A. Wave height variation across beaches of arbitrary profile [J]. Journal of Geophysical Research Atmospheres, 1985, 90(C6): 11917–11927.

    Article  Google Scholar 

  10. Reichman B. O., Muhlestein M. B., Gee K. L. et al. Evolution of the derivative skewness for nonlinearly propagating waves [J]. The Journal of the Acoustical Society of America, 2016, 139(3): 1390–1403.

    Article  Google Scholar 

  11. Zou L., Wang A., Wang Z. et al. Experimental study of freak waves due to three-dimensional island terrain in random wave [J]. Acta Oceanologica Sinica, 2019, 38(6): 92–99.

    Article  Google Scholar 

  12. Luo L., Liu S. X., Li J. X. et al. Numerical simulation of oblique and multidirectional wave propagation and breaking on steep slope based on FEM model of Boussinesq equations [J]. Applied Mathematical Modelling, 2019, 71: 632–655.

    Article  MathSciNet  Google Scholar 

  13. Rocha M. V. L., Michallet H., Silva P. A. Improving the parameterization of wave nonlinearities-The importance of wave steepness, spectral bandwidth and beach slope [J]. Coastal Engineering, 2017, 121: 77–89.

    Article  Google Scholar 

  14. Peng Z., Zou Q., Reeve D. et al. Parameterisation and transformation of wave asymmetries over a low-crested breakwater [J]. Coastal Engineering, 2009, 56: 1123–1132.

    Article  Google Scholar 

  15. Dong G. H., Chen H. Z., Ma Y. X. Parameterization of nonlinear shallow water waves over sloping bottoms [J]. Coastal Engineering, 2014, 94: 23–32.

    Article  Google Scholar 

  16. Van der A D. A., Van der Zanden J., O’Donoghue T. et al. Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar [J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3287–3310.

    Google Scholar 

  17. Seiffert B. R., Ducrozet G. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation [J]. Ocean Dynamics, 2018, 68(1): 65–89.

    Article  Google Scholar 

  18. Mei T., Gao F. Flume experiment research on law of wave propagation in reef flat [J]. Journal of Waterway and Harbor, 2013, 34(1): 13–18(in Chinese).

    Google Scholar 

  19. Buckley M. L., Lowe R. J., Hansen J. E. et al. Wave setup over a fringing reef with large bottom roughness [J]. Journal of Physical Oceanography, 2016, 46(8): 2317–2333.

    Article  Google Scholar 

  20. Yao Y., He W., Du R. et al. Study on wave-induced setup over fringing reefs in the presence of a reef crest [J]. Applied Ocean Research, 2017, 66: 164–177.

    Article  Google Scholar 

  21. Wu Y. Y., Randell D., Christou M. et al. On the distribution of wave height in shallow water [J]. Coastal Engineering, 2016, 111: 39–49.

    Article  Google Scholar 

  22. Wang Y. Nonlinear crest distribution for shallow water Stokes waves [J]. Applied Ocean Research, 2016, 57: 152–161.

    Article  Google Scholar 

  23. Norgaard J. Q. H., Andersen T. L. Can the Rayleigh distribution be used to determine extreme wave heights in non-breaking swell conditions? [J]. Coastal Engineering, 2016, 111: 50–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-xue Liu.

Additional information

Project supported by the National Basic Research Program of China (Grant No. 2013CB036101), the National Natural Science Foundation of China (Grant Nos. 51879037, 51739010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Jy., Liu, Sx., Li, Jx. et al. Experimental study of wave propagation characteristics on a simplified coral reef. J Hydrodyn 32, 385–397 (2020). https://doi.org/10.1007/s42241-019-0069-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0069-2

Key words

Navigation