Skip to main content

Advertisement

Log in

DSCAM-AS1 mediates pro-hypertrophy role of GRK2 in cardiac hypertrophy aggravation via absorbing miR-188-5p

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Sustained cardiac hypertrophy, as previously clarified, serves as a critical initiator of heart failure and therefore is acknowledged as an important factor for heart failure treatment. The broadly demonstrated function and participation of long non-coding RNAs (lncRNAs) in tumors are well accepted. However, the underlying mechanism implicating lncRNAs in cardiac hypertrophy is mostly unexplored and deserves to be specifically studied. The devised work was aimed to disclose the function of lncRNA DS cell adhesion molecule antisense RNA 1 (DSCAM-AS1) in angiotensin II (AngII)-induced cardiac hypertrophy. In this study, we discovered the upregulation of DSCAM-AS1 in cardiomyocytes treated with AngII by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot and qRT-PCR suggested that DSCAM-AS1 silencing attenuated the highly expressed hypertrophic biomarkers including β-myosin heavy chain (β-MHC), brain natriuretic peptide (BNP), and atrial natriuretic peptide (ANP) at mRNA and protein levels. The expanded cell surface in the presence of AngII treatment area was also shrunk by DSCAM-AS1 silencing. Mechanical analysis manifested that DSCAM-AS1 sponged microRNA-188-5p to boost the pro-hypertrophy gene G protein-coupled receptor kinase 2 (GRK2) expression. Rescue experiments unveiled miR-188-5p and GRK2 managed to reverse the anti-hypertrophy impact of DSCAM-AS1 silencing. In summary, DSCAM-AS1 was identified as a positive modulator in cardiac hypertrophy through miR-188-5p decoying and GRK2 augmentation, giving rise to an enriched theoretical basis for finding a promising target in cardiac hypertrophy regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Cannavo A, Komici K, Bencivenga L, D'Amico ML, Gambino G, Liccardo D, Ferrara N, Rengo G (2018) GRK2 as a therapeutic target for heart failure. Expert Opin Ther Targets 22:75–83

    Article  CAS  Google Scholar 

  • Deng M, Tufan T, Raza MU, Jones TC, Zhu MY (2016) MicroRNAs 29b and 181a down-regulate the expression of the norepinephrine transporter and glucocorticoid receptors in PC12 cells. J Neurochem 139:197–207

    Article  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  CAS  Google Scholar 

  • Fu Q, Xu B, Parikh D, Cervantes D, Xiang YK (2015) Insulin induces IRS2-dependent and GRK2-mediated beta2AR internalization to attenuate betaAR signaling in cardiomyocytes. Cell Signal 27:707–715

    Article  CAS  Google Scholar 

  • Jin S, Yang X, Li J, Yang W, Ma H, Zhang Z (2019) p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma. Mol Cancer 18:38

    Article  Google Scholar 

  • Kang MR, Park KH, Yang JO, Lee CW, Oh SJ, Yun J, Lee MY, Han SB, Kang JS (2016) miR-6734 up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One 11:e0160961

    Article  Google Scholar 

  • Karreth FA, Pandolfi PP (2013) ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3:1113–1121

    Article  CAS  Google Scholar 

  • Kooij V, Viswanathan MC, Lee DI, Rainer PP, Schmidt W, Kronert WA, Harding SE, Kass DA, Bernstein SI, Van Eyk JE, Cammarato A (2016) Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy. Cardiovasc Res 110:238–248

    Article  CAS  Google Scholar 

  • Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H (2014) MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 173:268–276

    Article  Google Scholar 

  • Li Y, Yan X, Shi J, He Y, Xu J, Lin L, Chen W, Lin X, Lin X (2019) Aberrantly expressed miR-188-5p promotes gastric cancer metastasis by activating Wnt/beta-catenin signaling. BMC Cancer 19:505

    Article  Google Scholar 

  • Li Z, Liu Y, Guo X, Sun G, Ma Q, Dai Y, Zhu G, Sun Y (2018) Long noncoding RNA myocardial infarction-associated transcript is associated with the microRNA-150-5p/P300 pathway in cardiac hypertrophy. Int J Mol Med 42:1265–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Yu T, Han Y, Jiang H, Wang C, You T, Zhao X, Shan H, Yang R, Yang L, Shan H, Gu Y (2018) LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer 17:119

    Article  Google Scholar 

  • Liao J, Xie N (2019) Long noncoding RNA DSCAM-AS1 functions as an oncogene in non-small cell lung cancer by targeting BCL11A. Eur Rev Med Pharmacol Sci 23:1087–1092

    CAS  PubMed  Google Scholar 

  • Liu H, Xu D, Zhong X, Xu D, Chen G, Ge J, Li H (2019) LncRNA-mRNA competing endogenous RNA network depicts transcriptional regulation in ischaemia reperfusion injury 23:2272–2276

  • Liu T, Han Z, Li H, Zhu Y, Sun Z, Zhu A (2018) LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3. Mol Cancer 17:118

  • Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397

  • Mao Q, Liang XL, Zhang CL, Pang YH, Lu YX (2019) LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther 10:393

    Article  CAS  Google Scholar 

  • Nagano M, Higaki J, Nakamura F, Higashimori K, Nagano N, Mikami H, Ogihara T (1992) Role of cardiac angiotensin II in isoproterenol-induced left ventricular hypertrophy. Hypertension 19:708–712

    Article  CAS  Google Scholar 

  • Nie ZY, Yang L, Liu XJ, Yang Z, Yang GS, Zhou J, Qin Y, Yu J, Jiang LL, Wen JK, Luo JM (2019) Morin inhibits proliferation and induces apoptosis by modulating the miR-188-5p/PTEN/AKT regulatory pathway in CML cells. Mol Cancer Ther 18:2296–2307

    Article  CAS  Google Scholar 

  • Niknafs YS, Han S, Ma T, Speers C, Zhang C, Wilder-Romans K, Iyer MK, Pitchiaya S, Malik R, Hosono Y, Prensner JR, Poliakov A, Singhal U, Xiao L, Kregel S, Siebenaler RF, Zhao SG, Uhl M, Gawronski A, Hayes DF, Pierce LJ, Cao X, Collins C, Backofen R, Sahinalp CS, Rae JM, Chinnaiyan AM, Feng FY (2016) The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat Commun 7:12791

    Article  CAS  Google Scholar 

  • Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP, Gius D, Gupta MP (2015) Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun 6:6656

    Article  CAS  Google Scholar 

  • Ruedel A, Dietrich P, Schubert T, Hofmeister S, Hellerbrand C, Bosserhoff AK (2015) Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts. Int J Clin Exp Pathol 8:6607–6616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato PY, Chuprun JK, Ibetti J, Cannavo A, Drosatos K, Elrod JW, Koch WJ (2015) GRK2 compromises cardiomyocyte mitochondrial function by diminishing fatty acid-mediated oxygen consumption and increasing superoxide levels. J Mol Cell Cardiol 89:360–364

    Article  CAS  Google Scholar 

  • Schlegel P, Reinkober J, Meinhardt E, Tscheschner H, Gao E, Schumacher SM, Yuan A, Backs J, Most P, Wieland T, Koch WJ, Katus HA, Raake PW (2017) G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PLoS One 12:e0182110

    Article  Google Scholar 

  • Schumacher SM, Gao E, Cohen M, Lieu M, Chuprun JK, Koch WJ (2016) A peptide of the RGS domain of GRK2 binds and inhibits Galpha(q) to suppress pathological cardiac hypertrophy and dysfunction. Sci Signal 9:ra30

    Article  Google Scholar 

  • Schumacher SM, Gao E, Zhu W, Chen X, Chuprun JK, Feldman AM, Tesmer JJ, Koch WJ (2015) Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci Transl Med 7:277ra231

  • Shao S, Tian J, Zhang H, Wang S (2018) LncRNA myocardial infarction-associated transcript promotes cell proliferation and inhibits cell apoptosis by targeting miR-330-5p in epithelial ovarian cancer cells. Arch Med Sci 14:1263–1270

    Article  CAS  Google Scholar 

  • Shi J, Zhang W, Tian H, Zhang Q, Men T (2017) lncRNA ROR promotes the proliferation of renal cancer and is negatively associated with favorable prognosis. Mol Med Rep 16:9561–9566

    Article  CAS  Google Scholar 

  • Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  Google Scholar 

  • Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR (2015) Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89:1401–1438

    Article  CAS  Google Scholar 

  • Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  Google Scholar 

  • Wang J, Zhang X, Chen W, Hu X, Li J, Liu C (2019) Regulatory roles of long non-coding RNAs implicated in cancer hallmarks. Int J Cancer. https://doi.org/10.1002/ijc.32277

  • Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X, Li J, Wang Y, Lei W, Dong N, Shen Z, Hu S (2018) Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther 25:511–523

    Article  CAS  Google Scholar 

  • Xie Y, Dang W, Zhang S, Yue W, Yang L, Zhai X, Yan Q, Lu J (2019) The role of exosomal noncoding RNAs in cancer. Mol Cancer 18:37

    Article  Google Scholar 

  • Xu S, Kong D, Chen Q, Ping Y, Pang D (2017) Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer 16:129

    Article  Google Scholar 

  • Xu TP, Ma P, Wang WY, Shuai Y, Wang YF, Yu T, Xia R, Shu YQ (2019) KLF5 and MYC modulated LINC00346 contributes to gastric cancer progression through acting as a competing endogeous RNA and indicates poor outcome. Cell Death Differ 26:2179–2193. https://doi.org/10.1038/s41418-018-0236-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo J, Wang Y, Xu Y (2015) miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget 6:6092–6104

    Article  Google Scholar 

  • Zhang Q, Wang F, Wang F, Wu N (2020) Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol 235:245–253

    Article  CAS  Google Scholar 

  • Zhong Z, Hou J, Zhang Q, Li B, Li C, Liu Z, Yang M, Zhong W, Zhao P (2018) Differential expression of circulating long non-coding RNAs in patients with acute myocardial infarction. Medicine (Baltimore) 97:e13066

    Article  CAS  Google Scholar 

  • Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8:130–139

    Article  CAS  Google Scholar 

  • Zhu W, Wu X, Yang B, Yao X, Cui X, Xu P, Chen X (2019) miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids. Acta Biochim Biophys Sin Shanghai 51:185–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the aids from all participators in this work.

Funding

This study was supported by the Project of Fujian Provincial Department of Education (JA15717) and Quanzhou Science and Technology Project (2015Z98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefeng Cai.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Cai, K. DSCAM-AS1 mediates pro-hypertrophy role of GRK2 in cardiac hypertrophy aggravation via absorbing miR-188-5p. In Vitro Cell.Dev.Biol.-Animal 56, 286–295 (2020). https://doi.org/10.1007/s11626-020-00441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00441-w

Keywords

Navigation