Skip to main content

Advertisement

Log in

Photocatalytic Degradation of 2,4-Dichlorophenol on NiAl-Mixed Oxides Derivatives of Activated Layered Double Hydroxides

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Advanced oxidation processes such as photocatalysis have assumed enormous importance in the scientific field as viable sustainable alternatives to be applied to the elimination of persistent organic pollutants present in water reservoirs for human consumption. Persistent organic compounds like pesticides that belong to the chlorophenol family are a global public health priority since they are associated with serious diseases like cancer and can even cause death at low concentrations of prolonged exposure. This work proposes the use of activated Ni/Al layered double hydroxides as photocatalysts for the degradation of 2,4-dichlorophenol. The study variables associated with the properties of the catalysts were the Ni/Al metal ratio as well as the synthesis conditions. To determine the structural properties of catalytic precursors and catalysts, the techniques of XRD, FTIR, UV-DR, DGTA, TPD, SEM-EDS and TEM were used. The photodegradation tests were carried out in a Bach type reactor with a high energy uv lamp. The results of the photocatalytic degradation of 2,4-dichlorophenol in aqueous solution showed good photocatalytic activity with a degradation efficiency of up to 94% attributed to the presence of Ni in the crystalline and amorphous structures of NiO–NiAl2O4 oxides by means of a combined oxidation-reduction mechanism due to the effect of holes and superoxide and hydroxyl radicals not associated with the memory effect of reconstruction of layered double hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Nugen S, Baeumner HJ (2008) Trends and opportunities in food pathogen detection. Anal Bioanal Chem 391:451–454

    Article  CAS  Google Scholar 

  2. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  3. Jack R, Ayoko G, Adebajo M, Frost R (2015) A review of iron species for visible-light photocatalytic water purification. Environ Sci Pollut Res 22:7439–7449. https://doi.org/10.1007/s11356-015-4346-5

    Article  CAS  Google Scholar 

  4. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  5. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energ 44:540–577

    Article  CAS  Google Scholar 

  6. Athanasekou CP, Likodimos V, Falaras P (2018) Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J Environ Chem Eng 6(6):7386–7394. https://doi.org/10.1016/j.jece.2018.07.026

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  8. Zhao C, Liu L, Rao G, Zhao H, Wang L, Xu J, Li Y (2015) Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor. Catal Sci Technol 5:3288. https://doi.org/10.1039/c5cy00216h

    Article  CAS  Google Scholar 

  9. Choquette-Labbé M, Shewa WA, Lalman JA, Shanmugam SR (2014) Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: integrating quantitative and qualitative factors using response surface methodology. Water 6:1785–1806. https://doi.org/10.3390/w6061785

    Article  CAS  Google Scholar 

  10. Abdel-Maksoud Y, Imam E, Ramadan A (2016) TiO2 solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization: analytical. Rev Catal 6:138. https://doi.org/10.3390/catal6090138

    Article  CAS  Google Scholar 

  11. Österlund L, Mattsson A, Brischetto M, Byberg JJ, Stefanov BI, Ji YX, Niklasson GA (2018) Spectral selective solar light enhanced photocatalysis: TiO2/TiAlN bilayer films. Top Catal 61:1607–1614. https://doi.org/10.1007/s11244-018-1011-5

    Article  CAS  Google Scholar 

  12. Chen H, Liu XY, Hao XD, Zhang YX (2016) Facile biphasic synthesis of TiO2–MnO2 nanocomposites for photocatalysis. Ceram Int 42:19425–19428. https://doi.org/10.1016/j.ceramint.2016.08.160

    Article  CAS  Google Scholar 

  13. Zhou P, Le V, Xie YJ, Xu J (2017) Studies on facile synthesis and properties of mesoporous CdS/TiO2 composite for photocatalysis applications. J Alloy Compd 692:170–177. https://doi.org/10.1016/j.jallcom.2016.09.039

    Article  CAS  Google Scholar 

  14. Mazierski P, Mikolajczyk A, Bajorowicz B, Malankowska A, Zaleska-Medynska A, Nadolna J (2018) The role of lanthanides in TiO2-based photocatalysis: a review. Appl Catal B 233:301–317. https://doi.org/10.1016/j.apcatb.2018.04.019

    Article  CAS  Google Scholar 

  15. Zhou P, Le Z, Xie Y, Fang J, Xu J (2017) Studies on facile synthesis and properties of mesoporous CdS/TiO2 composite for photocatalysis applications. J Alloy Compd 692:170–177. https://doi.org/10.1016/j.jallcom.2016.09.039

    Article  CAS  Google Scholar 

  16. Marchelek M, Grabowska E, Klimczuk T, Lisowski W, Mazierski P, Zaleska-Medynska A (2018) Visible light photocatalysis employing TiO2/SrTiO3-BiOI composites: surface properties and photoexcitation mechanism. Mol Catal 452:154–166. https://doi.org/10.1016/j.mcat.2018.04.006

    Article  CAS  Google Scholar 

  17. Chung SG, Chang YS, Choi JW, Baek KY, Hong SW, Yun ST, Lee SH (2013) Photocatalytic degradation of chlorophenols using star block copolymers: removal efficiency, by-products and toxicity of catalyst. Chem Eng J 215–216:921–928. https://doi.org/10.1016/j.cej.2012.11.070

    Article  CAS  Google Scholar 

  18. Jimenez-Tototzintle M, Jales I, da Silva S, Guimaraes PR, Mendes E (2018) Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis. Chemosphere 210:449–457. https://doi.org/10.1016/j.chemosphere.2018.07.036

    Article  CAS  PubMed  Google Scholar 

  19. Irawaty W, Soetaredjo FE, Ayucitra A (2014) Understanding the relationship between organic structure and mineralization rate of TiO2-mediated photocatalysis. Procedia Chem 9:131–138

    Article  CAS  Google Scholar 

  20. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7:103248. https://doi.org/10.1016/j.jece.2019.103248

    Article  CAS  Google Scholar 

  21. Hu X, Hu X, Peng Q, Zhou L, Tan X, Jiang L, Tang C, Wang H, Liu S, Wang Y, Ning Z (2020) Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem Eng J 380:122366. https://doi.org/10.1016/j.cej.2019.122366

    Article  CAS  Google Scholar 

  22. Holcombe GW, Phipps GL, Fiandt JT (1982) Effects of phenol, 2,4-dimethylphenol, 2,4-dichlorophenol, and pentachlorophenol on embryo larval, and early-juvenile Fathead Minnows (Pimephales promelas). Arch Environ Contam Toxicol 11:73–78

    Article  CAS  Google Scholar 

  23. Boyd EM, Killhanm K, Meharg AA (2001) Toxicity of mono-, di- and tri-chlorophenols to lux marked terrestrial bacteria, Burkholderia species Rasc c2 and Pseudomonas fluorescens. Chemosphere 43:157–166

    Article  CAS  Google Scholar 

  24. Zheng D, Jiao H, Zhong H, Qiu J, Yan X, Duan Q, Chai L (2018) Chlorophenols in marine organisms from the southern coast of Hangzhou Bay, China, and an assessment of risks posed to human health. J Oceanol Limnol 36(3):726–737. https://doi.org/10.1007/s00343-018-7039-3

    Article  CAS  Google Scholar 

  25. Kukkonen JVK (2002) Lethal body residue of chlorophenols and mixtures of chlorophenols in benthic organisms. Arch Environ Contam Toxicol 43:214–220. https://doi.org/10.1007/s00244-002-1174-7

    Article  CAS  PubMed  Google Scholar 

  26. Yu J, Wang T, Rtimi S (2019) Magnetically separable TiO2/FeOx/POM accelerating the photocatalytic removal of the emerging endocrine disruptor: 2,4-dichlorophenol. Appl Catal B 254:66–75. https://doi.org/10.1016/j.apcatb.2019.04.088

    Article  CAS  Google Scholar 

  27. Ruan X, Liu H, Wang J, Zhao D, Fan X (2019) A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles. Sci Total Environ 697:133996. https://doi.org/10.1016/j.scitotenv.2019.133996

    Article  CAS  PubMed  Google Scholar 

  28. Diao ZH, Yan L, Dong FX, Qian W, Deng QH, Kong LJ, Yang JW, Lei ZX, Du JJ, Chu W (2020) Synergism with Cd(II) immobilization in a contaminated soil. Chem Eng J 379:122313. https://doi.org/10.1016/j.cej.2019.122313

    Article  CAS  Google Scholar 

  29. Diao XH, Yan L, Dong FX, Qian W, Deng QH, Kong LJ, Yang JW, Lei ZX, Du JJ, Chu W (2009) ZnO/Mg–Al layered double hydroxides as strongly adsorptive photocatalysts. Res Chem Intermed 35:685–692. https://doi.org/10.1007/s11164-009-0094-9

    Article  CAS  Google Scholar 

  30. Wu SZ, Li N, Zhang WD (2014) Attachment of ZnO nanoparticles onto layered double hydroxides microspheres for high performance photocatalysis. J Porous Mater 21:157–164. https://doi.org/10.1007/s10934-013-9760-9

    Article  CAS  Google Scholar 

  31. Cavani F, Trifiro F, Vaccari A (1992) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  Google Scholar 

  32. Roelofs JCAA, Bokhoven JA, Dillen AJ, Jong KP (2002) The thermal decomposition of Mg ± Al hydrotalcites: effects of interlayer anions and characteristics of the final structure. Chem Eur J 8:5571–5579

    Article  CAS  Google Scholar 

  33. Yahyaoui R, Sanchez PE, Pérez LA, Nahdi K, Criado JM (2018) Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O). Thermochim Acta 667:177–184. https://doi.org/10.1016/j.tca.2018.07.025

    Article  CAS  Google Scholar 

  34. Nguyen HKD, Nguyen HV, Nguyen VA (2018) Effect of synthetic conditions on the structure of mesoporous Mg-Al-Co hydrotalcite. J Mol Struct 1171:25–32. https://doi.org/10.1016/j.molstruc.2018.05.087

    Article  CAS  Google Scholar 

  35. Zhang D, Zhao G, Yu J, Yan T, Zhu M, Jiao F (2016) Thermodynamic and kinetic studies of effective adsorption of 2,4,6-trichlorophenol onto calcined Mg/Al-CO3 layered double hydroxide. J Wuhan Univ Technol 31:1211–1218. https://doi.org/10.1007/s11595-016-1514-5

    Article  CAS  Google Scholar 

  36. Yang B, Liu J, Liu Z, Wang Y, Cai J, Peng L (2019) Preparation of chitosan/Co-Fe-layered double hydroxides and its performance for removing 2,4-dichlorophenol. Environ Sci Pollut Res 26:3814–3822. https://doi.org/10.1007/s11356-018-3886-x

    Article  CAS  Google Scholar 

  37. Zhou S, Li C, Zhao G, Liu L, Yu J, Jiang X, Jiao F (2019) Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol. J Mater Sci Mater Electron 30:19009–19019. https://doi.org/10.1007/s10854-019-02258-0

    Article  CAS  Google Scholar 

  38. Prasad C, Tang H, Liu W (2018) Magnetic Fe3O4 based layered double hydroxides (LDHs) nanocomposites (Fe3O4/LDHs): recent review of progress in synthesis, properties and applications. J Nanostruct Chem 8:393–412. https://doi.org/10.1007/s40097-018-0289-y

    Article  CAS  Google Scholar 

  39. Zheng K, Song Y, Wang X, Li X, Mao X, Wang D (2019) Understanding the electrode reaction process of dechlorination of 2,4-dichlorophenol over Ni/Fe nanoparticles: effect of pH and 2,4-dichlorophenol concentration. J environ sci 84:13–20. https://doi.org/10.1016/j.jes.2019.01.012

    Article  Google Scholar 

  40. Yang B, Cai J, Wei S, Nie N, Liu J (2020) Preparation of chitosan/NiFe-layered double hydroxides composites and its fenton–like catalytic oxidation of phenolic compounds. J Polym Environ 28:343–353. https://doi.org/10.1007/s10924-019-01614-9

    Article  CAS  Google Scholar 

  41. Alzhrani G, Ahmed NS, Aazam ES, Saleh TS, Mokhtar M (2019) Novel efficient Pd-free Ni-layered double hydroxide catalysts for a suzuki C-C coupling reaction. Chem Select. https://doi.org/10.1002/slct.201900890

    Article  Google Scholar 

  42. Tsai KJ, Ni CS, Chen HY, Huang JH (2020) Single-walled carbon nanotubes/Ni–Co–Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices. J Power Sources 4541:2020227912. https://doi.org/10.1016/j.jpowsour.2020.227912

    Article  CAS  Google Scholar 

  43. Klemkaite K, Prosycevas I, Taraskevicius R, Khinsky A, Kareiva A (2011) Synthesis and characterization of layered double hydroxides with different cations (Mg, Co, Ni, Al), decomposition and reformation of mixed metal oxides to layered structure. Cent Eur J Chem 9(2):275–282. https://doi.org/10.2478/s11532-011-0007-9

    Article  CAS  Google Scholar 

  44. Belskaya OB, Leonteva NN, Gulyaeva TI, Cherepanova SV, Talzi VP, Drozdov VA, Likholobov VA (2013) Influence of a doubly charged cation nature on the formation and properties of mixed oxides MAlOx (M = Mg2+, Zn2+, Ni2+) obtained from the layered hydroxide precursors. Russ Chem Bull 62(11):2349–2361

    Article  CAS  Google Scholar 

  45. Zhao L, Li X, Hao CE, Raston CL (2012) SO2 adsorption and transformation on calcined NiAl hydrotalcite-like compounds surfaces: An in situ FTIR and DFT study. Appl Catal B 117– 118:339. https://doi.org/10.1016/j.apcatb.2012.01.034

    Article  CAS  Google Scholar 

  46. Mardani HR (2017) (Cu/Ni)–Al layered double hydroxides@Fe3O4 as efficient magnetic nanocomposite photocatalyst for visible-light degradation of methylene blue. Res Chem Intermed 43:5795–5810. https://doi.org/10.1007/s11164-017-2963-y

    Article  CAS  Google Scholar 

  47. Foruzin LJ, Rezvani Z, Nejati K (2018) Preparation of two-color photoluminescence emission based on azo dye-layered double hydroxide systems and controlling photoluminescence properties of Allura Red AC. J Iran Chem Soc 15:2649–2658. https://doi.org/10.1007/s13738-018-1453-5

    Article  CAS  Google Scholar 

  48. Castañeda C, Tzompantzi F, Gómez R, Rojas H (2016) Enhancedphotocatalyticdegradation of4-chlorophenoland2,4-dichlorophenolon insituphosphatedsol-gelTiO2. J Chem Technol Biotechnol 91:2170–2178. https://doi.org/10.1002/jctb.4943

    Article  CAS  Google Scholar 

  49. Coenen K, Gallucci F, Mezari B, Hensen E, Annaland M (2018) An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J CO2 Util 24:228–239

    Article  CAS  Google Scholar 

  50. Wierzbicki D, Baran R, Dębek R, Motak M, Gálvez ME, Grzybek T, Da Costa P, Glatzel P (2018) Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions: operando X-ray absorption and emission spectroscopy investigation. Appl Catal B 232(15):409–419. https://doi.org/10.1016/j.apcatb.2018.03.089

    Article  CAS  Google Scholar 

  51. Wang W, Xu Z, Guo Z, Jiang C, Chu W (2015) Layered double hydroxide and related catalysts for hydrogen production and a biorefinery. Chin J Catal 36:139–147. https://doi.org/10.1016/S1872-2067(14)60229-1

    Article  Google Scholar 

  52. Lu B, Zhuang J, Du J, Gu F, Xu G, Zhong Z, Liu Q, Su F (2019) Highly dispersed Ni nanocatalysts derived from NiMnAl-hydrotalcites as high-performing catalyst for low-temperature syngas methanation. Catalysts 9:282. https://doi.org/10.3390/catal9030282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACYT, UAM-I and UG for your support and funding. Additionally, we thank Dr. Mirella Gutiérrez A. from UAM-A and Dr. Raul Pérez-Hernandez from ININ for their scientific-technological support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esthela Ramos-Ramírez or Norma L. Gutiérrez-Ortega.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Ramírez, E., Gutiérrez-Ortega, N.L., Tzompantzi-Morales, F. et al. Photocatalytic Degradation of 2,4-Dichlorophenol on NiAl-Mixed Oxides Derivatives of Activated Layered Double Hydroxides. Top Catal 63, 546–563 (2020). https://doi.org/10.1007/s11244-020-01269-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01269-0

Keywords

Navigation