Skip to main content
Log in

Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A four-parameter model (Seo-Seo model) was used to analyze the flow behavior of some electrorheological (ER) fluids containing polypyrrole (PPy) nanoparticles, nanocomposite particles of conductive polypyrrole confined in mesoporous silica (MCM-41), and core-shell-structured SiO2/polypyrrole nanoparticles. The static yield stress predictions by the model were compared with the experimental data and dynamic yield stress obtained from the Bingham model and/or Cho-Choi-Jhon (CCJ) model. The static yield stress values were larger than the dynamic yield stress values. It was also found that the static yield stress of the polypyrrole suspension had a quadratic dependence on the electric field strength as predicted by the electric polarization model whereas those of the nanocomposite suspensions showed 1.5 power-law dependency. A master curve describing the yield stress data dependence on the electric field strength was obtained using a single-parameter scaling function to interpret the underlying mechanism of ER activity. A simple method for evaluating the activity mechanism criterion has been proposed and applied to the ER response of those three kinds of suspension. The results show that the critical electric field strength should be checked before the conduction mechanism is asserted, even if the yield stress plot shows 1.5 power-law dependence on the electric field strength.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RA (1994) Electrostatic forces in an ideal spherical-particle electrorheological fluid. Langmuir 10:2917–2928

    Article  CAS  Google Scholar 

  • Armes SP (1996) Conducting polymer colloids. Current Opin Colloid Interf Sci 1:214–220

    Article  CAS  Google Scholar 

  • Boissy C, Atten P, Foulc JN (1996) On the role of conductivities and frequency in the electrorheological effect. J Intel Mater Syst Struct 7:599–603

    Article  CAS  Google Scholar 

  • Cheng Q, Pavlinek V, Lengalova A, Li C, He Y, Saha P (2006a) Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels: preparation and its electrorheology. Micropor Mesopo Mater 93:263–269

    Article  CAS  Google Scholar 

  • Cheng Q, He Y, Pavlinek V, Lengalova A, Li C, Saha P (2006b) Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions. J Mater Sci 41:5047–5049

    Article  CAS  Google Scholar 

  • Cho MS, Choi HJ, Ahn WS (2004) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir 20:202–207

    Article  CAS  Google Scholar 

  • Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488

    Article  CAS  Google Scholar 

  • Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS (2001) A yield stress scaling function for electrorheological fluids. Appl Phys Lett 78:3806–3808

    Article  CAS  Google Scholar 

  • Choi HJ, Zhang WL, Kim S, Seo Y (2014) Core-shell structured electro- and magneto-responsive materials, fabrication and characteristics. Materials 7:7460–7471

    Article  Google Scholar 

  • Choi J, Han S, Kim H, Sohn E, Choi HJ, Seo Y (2019) Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl Nano Mater 2:6939–6947

    Article  CAS  Google Scholar 

  • Chuah WH, Zhang WL, Choi HJ, Seo Y (2015) Magnetorheology of core-shell structured carbonyl iron / polystyrene foam nanoparticles suspension with enhanced stability. Macromolecules 48:7311–7319

    Article  CAS  Google Scholar 

  • Davis LC (1992) Polarization forces and conductivity effects in electrorheological fluids. J Appl Phys 72:1334–1340

    Article  CAS  Google Scholar 

  • Davis LC, Ginder JM (1995) In: Havelka KO, Filisko FE (eds) Electrostatic forces in electrorheological fluids progress in electrorheology. Plenum, New York, pp 107–114

    Google Scholar 

  • Dong YZ, Seo Y, Choi HJ (2019) Recent development of electro-response smart electrorheological fluids. Soft Matter 15:3473–3486

    Article  CAS  Google Scholar 

  • Espin MJ, Delgado AV, Plocharski JZ (2006) Effect of additives and measurement procedure on the electrorheology of hematite/ silicone oil suspensions. Rheol Acta 45:865–876

    Article  CAS  Google Scholar 

  • Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786

    Article  CAS  Google Scholar 

  • Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967

    Article  CAS  Google Scholar 

  • Han S, Chi J, Seo YP, Park IJ, Choi HJ, Seo Y (2018) High-performance magnetorheological suspensions of pickering- emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 34:2807–2814

    Article  CAS  Google Scholar 

  • Kim DH, Kim YD (2007) Electrorheological properties of polypyrrole and its composite ER fluids. J Ind Eng Chem 13:879–894

    CAS  Google Scholar 

  • Kim YD, Park DH (2002) The electrorheological responses of suspensions of polypyrrole-coated polyethylene particles. Colloid Polym Sci 280:828–834

    Article  CAS  Google Scholar 

  • Kim MW, Moon IJ, Choi HJ, Seo Y (2016) Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology. RSC Adv 6:56495–56502

    Article  CAS  Google Scholar 

  • Klingenberg DJ (2007) Mason numbers for magnetorheology. J Rheol 51:883–893

    Article  CAS  Google Scholar 

  • Klingenberg D, Ulicny JC, Golden MA (2007) A new mason numbers for magnetorheology, proceedings of the 10th international conference on ERMR 2006 (Eds. Gordaninejad F, Graeve OA, Fuchs A, York D ), pp. 94–100

  • Liu YD, Choi HJ (2009) Comment on “Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions”. J Mater Sci 44:2999–3001

    Article  CAS  Google Scholar 

  • Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795

    Article  CAS  Google Scholar 

  • McIntyre C, Hengxi Y, Green FP (2013) Electrorheology of suspensions containing interfacially active constituents. ACS Appl Mater Interfa 5:8925–8931

    Article  CAS  Google Scholar 

  • Méheust Y, Parmar KPS, Schjelderupsen B, Fossum JO (2011) The electrorheology of suspensions of Na-fluorohectorite clay in silicone oil. J Rheol 55:809–833

    Article  Google Scholar 

  • Papanastasiou TC (1987) Flows of Materials with Yield. J Rheol 31:385–404

    Article  CAS  Google Scholar 

  • Parathasarathy M, Klingenberg DJ (1996) Electrorheology, mechanisms and models. Mater Sci Eng R 17:57–103

    Article  Google Scholar 

  • Parmar KPS, Meheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822

    Article  CAS  Google Scholar 

  • Sedlačík M, Mrlík M, Pavlínek V, Sáha P, Quadrat O (2012) Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym Sci. 290:41–48

    Article  Google Scholar 

  • Seo Y (2011) A new yield stress scaling function for electrorheological fluids. J Non-Newtonian Fluid Mechan 166:241–243

    Article  CAS  Google Scholar 

  • Seo YP, Seo Y (2012) Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 28:3077–3084

    Article  CAS  Google Scholar 

  • Seo YP, Choi HJ, Seo Y (2011) Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. Polymer 52:5695–5698

    Article  CAS  Google Scholar 

  • Seo YP, Choi HJ, Seo Y (2012) A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. Soft Matter 8:4659–4663

    Article  Google Scholar 

  • Seo YP, Choi HJ, Seo Y (2014) Modelling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. Colloids Surf. A. Physicochem Eng Asp 457:363–367

    Article  CAS  Google Scholar 

  • Seo YP, Choi HJ, Seo Y (2015) Yield stress analysis of electrorheological suspensions containing core–shell structured anisotropic poly(methyl methacrylate) microparticles. Polym Adv Tech 26:117–120

    Article  CAS  Google Scholar 

  • Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y (2018) Searching for a stable high-performance magnetorheological suspension. Adv Mater 30:1704769

    Article  Google Scholar 

  • Wu CW, Conrad H (1996) A modified conduction model for the electrorheological effect. J Phys D Appl Phys 29:3147–3153

    Article  CAS  Google Scholar 

  • Yamaguchi H, Zhang XR, Niu XD, Nishioka K (2010) Investigation of impulse of an ER fluid viscous damper. J Intell Mater Syst Struct 21:423–435

    Article  Google Scholar 

  • Zhang M, Gong X, Wen W (2009) Manipulation of microfluidic droplets by electrorheological fluid. Electrophoresis 30:3116–3123

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Institute of Engineering Research at Seoul National University, the KRICT (Korea Research Institute of Chemical Technology) Fundamental Research Program, Korea National Research Foundation (BK21PLUS SNU Materials Division), and POSCO through the project of “RIAM Future Material Solution Center”. HJC appreciates the financial support from the National Research Foundation of Korea (2018R1A4A1025169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyoung Jin Choi or Yongsok Seo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y.P., Han, S., Kim, J. et al. Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles. Rheol Acta 59, 415–423 (2020). https://doi.org/10.1007/s00397-020-01205-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01205-9

Keywords

Navigation