Skip to main content
Log in

Correlation of thermal conductivity with the catalytic activity of nanoparticles: the oxidation of benzyl alcohol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Different nanoparticles like cobalt oxide (Co3O4), iron oxide (Fe3O4), manganese ferrite (MnFe2O4), gadolinium oxide (Gd2O3), cerium oxide (CeO2), iron-cobalt (FeCo) and iron-cerium (FeCe) were prepared and tested for their catalytic activity in the liquid phase oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) in a self-designed Pyrex glass Gas Blowing Rotating Reactor (GBR reactor). Textural properties such as size and shape of catalysts were studied through available characterization techniques for better understanding of their catalytic activity. The oxidation of BzOH was carried out in different solvents such as water, toluene, benzene and heptane to unveil the effect of thermal conductivity of solvent on the catalytic activity of nanoparticles. The reaction was also carried out in solvent-free conditions in the presence of O2. The efficiency of each catalyst was measured in term of productivity (mmol g−1 h−1) instead of conventional units. The productivity values in comparison to available reports revealed that these catalysts will be prospective alternative to conventional industrial catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tayebani M, Shafaat B, Iravani M (2015) Hydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes. Iran J Catal 5:213–221

    CAS  Google Scholar 

  2. Della Pina C, Falletta E, Rossi M (2008) Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J Catal 260:384–386

    Article  CAS  Google Scholar 

  3. Obermayer D, Balu AM, Romero AA, Goessler W, Luque R, Kappe CO (2013) Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol. Green Chem 15:1530–1537

    Article  CAS  Google Scholar 

  4. Skupien E, Berger RJ, Santos VP, Gascon J, Makkee M, Kreutzer MT, Kooyman PJ, Moulijn JA, Kapteijn F (2014) Inhibition of a gold-based catalyst in benzyl alcohol oxidation: understanding and remediation. Catalysts 4:89–115

    Article  CAS  Google Scholar 

  5. Larrondo S, Barbaro A, Irigoyen B, Amadeo N (2001) Oxidation of toluene to benzaldehyde over VSb0.8Ti0.2O4: Effect of the operating conditions. Catal Today 64:179–187

    Article  CAS  Google Scholar 

  6. Dalal MK, Upadhyay MJ, Ram RN (1999) Oxidation of benzyl alcohol using polymer anchored Ru(III) complex as catalyst. J Mol Catal A Chem 142:325–332

    Article  CAS  Google Scholar 

  7. Sheldon RA, Arends IW, ten Brink GJ, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781

    Article  CAS  PubMed  Google Scholar 

  8. Martı́n SE, Suárez DF (2002) Catalytic aerobic oxidation of alcohols by Fe (NO3)3–FeBr3. Tetrahedron Lett 43:4475–4479

    Article  Google Scholar 

  9. Wang N, Liu R, Chen J, Liang X (2005) NaNO2-activated, iron-TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chem Commun 42:5322–5324

    Article  CAS  Google Scholar 

  10. Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R (2010) Iron chloride/4-acetamido-TEMPO/sodium nitrite-catalyzed aerobic oxidation of primary alcohols to the aldehydes. Adv Synth Catal 352:113–118

    Article  CAS  Google Scholar 

  11. Ma S, Liu J, Li S, Chen B, Cheng J, Kuang J, Liu Y, Wan B, Wang Y, Ye J, Yu Q (2011) Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones: catalysis with table salt. Adv Synth Catal 353:1005–1017

    Article  CAS  Google Scholar 

  12. Miao CX, Wang JQ, Yu B, Cheng WG, Sun J, Chanfreau S, He LN, Zhang SJ (2011) Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chem Commun 47:2697–2699

    Article  CAS  Google Scholar 

  13. Wang L, Li J, Lv Y, Zhao G, Gao S (2012) Selective aerobic oxidation of alcohols catalyzed by iron chloride hexahydrate/TEMPO in the presence of silica gel. Appl Organomet Chem 26:37–43

    Article  CAS  Google Scholar 

  14. Dijksman A, Marino-Gonzalez A, Mairata i Payeras A, Arends IW, Sheldon RA (2001) Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J Am Chem Soc 123:6826–6833

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama T, Setoyama T, Fujita N, Nakajima M, Maki T, Fujii K (1992) Novel direct hydrogenation process of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst. Appl Catal A 88:149–161

    Article  CAS  Google Scholar 

  16. ten Brink GJ, Arends IW, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287:1636–1639

    Article  PubMed  Google Scholar 

  17. Aijun H, Juanjuan L, Mingquan Y, Yan L, Xinhua P (2011) Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin J Chem Eng 19:1047–1051

    Article  Google Scholar 

  18. Menini L, Pereira MC, Parreira LA, Fabris JD, Gusevskaya EV (2008) Cobalt-and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. J Catal 254:355–364

    Article  CAS  Google Scholar 

  19. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley A, Prati L, Hutchings GJ (2007) Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catal Today 122:317–324

    Article  CAS  Google Scholar 

  20. Karimi B, Zamani A, Clark JH (2005) A bipyridyl palladium complex covalently anchored onto silica as an effective and recoverable interphase catalyst for the aerobic oxidation of alcohols. Organometallics 24:4695–4698

    Article  CAS  Google Scholar 

  21. Sheldon RA, Arends IWCE, Dijksman A (2000) New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal Today 57:157–166

    Article  CAS  Google Scholar 

  22. Noyori R, Aoki M, Sato K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986

    Article  CAS  Google Scholar 

  23. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc 126:10657–10666

    Article  CAS  PubMed  Google Scholar 

  24. Caravati M, Grunwaldt JD, Baiker A (2004) Selective oxidation of benzyl alcohol to benzaldehyde in “supercritical” carbon dioxide. Catal Today 91:1–5

    Article  CAS  Google Scholar 

  25. Shen PK, Xu C (2006) Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 8:184–188

    Article  CAS  Google Scholar 

  26. Choudhary VR, Chaudhari PA, Narkhede VS (2003) Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts. Catal Commun 4:171–175

    Article  CAS  Google Scholar 

  27. Zhan G, Hong Y, Mbah VT, Huang J, Ibrahim AR, Du M, Li Q (2012) Bimetallic Au–Pd/MgO as efficient catalysts for aerobic oxidation of benzyl alcohol: a green bio-reducing preparation method. Appl Catal A 439:179–186

    Article  CAS  Google Scholar 

  28. Sun Z, Li G, Liu HO, Liu L (2013) Salen-Co(II) complex incorporated into amino-functionalized MIL-101 (Cr) through postsynthetic modification as a cooperative catalyst for cyclohexane selective oxidation. Appl Catal A 466:98–104

    Article  CAS  Google Scholar 

  29. Rodionova LI, Smirnov AV, Borisova NE, Khrustalev VN, Moiseeva AA, Grünert W (2012) Binuclear cobalt complex with Schiff base ligand: synthesis, characterization and catalytic properties in partial oxidation of cyclohexane. Inorg Chim Acta 392:221–228

    Article  CAS  Google Scholar 

  30. Varga E, Pusztai P, Óvári L, Oszkó A, Erdőhelyi A, Papp C, Steinrück HP, Kónya Z, Kiss J (2015) Probing the interaction of Rh, Co and bimetallic Rh–Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation. Phys Chem Chem Phys 17:27154–27166

    Article  CAS  PubMed  Google Scholar 

  31. Ferencz Z, Erdohelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück HP, Kiss J (2014) Effects of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4:1205–1218

    Article  CAS  Google Scholar 

  32. Boopathi G, Raj SG, Kumar GR, Mohan R (2014) Co-precipitation synthesis, structural and luminescent behavior of erbium doped gadolinium oxide (Er3+: Gd2O3) Nanorods. Procedia Mater Sci 6:1436–1443

    Article  CAS  Google Scholar 

  33. Danmaliki GI, Saleh TA (2017) Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chem Eng 307:914–927

    Article  CAS  Google Scholar 

  34. Wang Z, Xu C, Wang H (2014) A facile preparation of highly active Au/MgO catalysts for aerobic oxidation of benzyl alcohol. Catal Lett 144:1919–1929

    Article  CAS  Google Scholar 

  35. Sadiq M, Aman R, Hussain S, Zia MA, Rahman NU, Saeed M (2015) Green and efficient oxidation of octanol by iron oxide nanoparticles supported on activated carbon. MRC 4:28–35

    Article  CAS  Google Scholar 

  36. Yarestani M, Khalaji AD, Rohani A, Das D (2014) Hydrothermal synthesis of cobalt oxide nanoparticles: its optical and magnetic properties. J Sci Iran 25:339–343

    Google Scholar 

  37. Cheng W, Tang K, Qi Y, Sheng J, Liu Z (2010) One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J Mater Chem 20:1799–1805

    Article  CAS  Google Scholar 

  38. Xu L, Yu Y, Li X, Somesfalean G, Zhang Y, Gao H, Zhang Z (2008) Synthesis and upconversion properties of monoclinic Gd2O3: Er3+ nanocrystals. Opt Mater 30(8):1284–1288

    Article  CAS  Google Scholar 

  39. Farahmandjou M, Zarinkamar M, Firoozabadi TP (2016) Synthesis of Cerium Oxide (CeO2) nanoparticles using simple co-precipitation method. Rev Mex Fis 62:496–499

    Google Scholar 

  40. Rajesh P, Greneche JM, Jacob GA, Arun T, Joseyphus RJ (2019) Exchange bias in chemically reduced FeCo alloy nanostructures. Phys Status Solidi 216:1900051

    Article  CAS  Google Scholar 

  41. Zehani K, Bez R, Moscovici J, Mazaleyrat F, Mliki N, Bessais L (2014) High magnetic moment of FeCo nanoparticles produced in polyol medium. IEEE Trans Magn 50:1–5

    Google Scholar 

  42. Hawi M, Elwardany A, Ismail M, Ahmed M (2019) Experimental investigation on performance of a compression ignition engine fueled with waste cooking oil biodiesel–diesel blend enhanced with iron-doped cerium oxide nanoparticles. Energies 12:798

    Article  CAS  Google Scholar 

  43. Sápi A, Halasi G, Kiss J, Dobó DG, Juhász KL, Kolcsár VJ, Ferencz Z, Vári G, Matolin V, Erdohelyi A, Kukovecz A (2018) In situ DRIFTS and NAP-XPS exploration of the complexity of CO2 hydrogenation over size-controlled Pt nanoparticles supported on mesoporous NiO. J Phys Chem C 122:5553–5565

    Article  CAS  Google Scholar 

  44. Ilyas M, Sadiq M (2007) Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by Pt/ZrO2. Chem Eng Technol 30:1391–1397

    Article  CAS  Google Scholar 

  45. Nascimento LF, Matsubara EY, Donate PM, Rosolen JM (2013) Catalytic behavior of ruthenium anchored on micronanostructured composite in selective benzyl alcohol oxidation. React Kinet Mech Cat 110:471–483

    Article  CAS  Google Scholar 

  46. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365

    Article  CAS  PubMed  Google Scholar 

  47. Guan J, Liu J (2014) A copper(II) Schiff base complex immobilized onto SBA-15 silica for selective oxidation of benzyl alcohol. Transit Met Chem 39:233–238

    Article  CAS  Google Scholar 

  48. Wu J, Hua W, Yue Y, Gao Z (2019) gC3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol. Reac Kinet Mech Cat 28:109–120

    Article  CAS  Google Scholar 

  49. Cordoba M, Miranda C, Lederhos C, Coloma-Pascual F, Ardila A, Fuentes GA, Pouilloux Y, Ramírez A (2017) Catalytic performance of Co3O4 on different activated carbon supports in the benzyl alcohol oxidation. Catalysts 7:384–396

    Article  CAS  Google Scholar 

  50. Nagy G, Beck A, Sáfrán G, Schay Z, Liu S, Li T, Qiao B, Wang J, Lázár K (2019) Nanodisperse gold catalysts in oxidation of benzyl alcohol: comparison of various supports under different conditions. Reac Kinet Mech Cat 128:71–95

    Article  CAS  Google Scholar 

  51. Alshammari HM, Humaidi JR, Alhumaimess MS, Aldosari OF, Alotaibi MH, Hassan HM, Wawata I (2019) Bimetallic Au: Pd nanoparticle supported on MgO for the oxidation of benzyl alcohol. Reac Kinet Mech Cat 128:97–108

    Article  CAS  Google Scholar 

  52. Wilkes JS (2004) Properties of ionic liquid solvents for catalysis. J Mol Catal A Chem 214:11–17

    Article  CAS  Google Scholar 

  53. Butt JB (1965) Thermal conductivity of porous catalysts. AIChE J 11:106–112

    Article  CAS  Google Scholar 

  54. Sato T, Hamada Y, Sumikawa M, Araki S, Yamamoto H (2014) Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. Ind Eng Chem Res 53:19331–19337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from Higher Education Commission of Pakistan (Grant Nos. 20-1604/R&D/09219 8 and 20-1897/NRPU/R&D/HEC/116806), Pakistan Science Foundation and University of Malakand (Grant No. PSF/Res/F-UM/Chem(434)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sadiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, S., Sadiq, M., Saeed, K. et al. Correlation of thermal conductivity with the catalytic activity of nanoparticles: the oxidation of benzyl alcohol. Reac Kinet Mech Cat 130, 289–302 (2020). https://doi.org/10.1007/s11144-020-01784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01784-x

Keywords

Navigation