Skip to main content
Log in

Nickel ferrite nanoparticles on a carbonaceous matrix and their colorimetric assay for ascorbic acid detection

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, nickel ferrite nanoparticles highly dispersed in a carbonaceous matrix (C/NiFe2O4) demonstrated a high catalytic activity oxidizing 3,3′,5,5′-tetramethylbenzidine (TMB) without the use of hydrogen peroxide. The blue color of oxidized TMB decreases by the introduction of ascorbic acid (AA) in the reaction system, which allowed the development of a colorimetric analytical method for AA detection. To achieve the best analytical performance, the parameters such as pH, temperature, reaction time, TMB concentration, and amount of C/NiFe2O4, were optimized. Under optimal conditions, the variation in absorbance measured at 653 nm was found to be proportional in the concentration range of 1.0 to 25 μmol L−1 with a detection limit of 0.26 μmol L−1. C/NiFe2O4 was synthesized following a simple combustion method using egg white as a fuel and carbon source, and characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta Rev Cancer 1826:443–457. https://doi.org/10.1016/jbbcan201206003

    Article  CAS  Google Scholar 

  2. Sahni S, Mangano KM, McLean RR, Hannan MT, Kiel DP (2015) Dietary approaches for bone health: lessons from the Framingham Osteoporosis Study. Curr Osteoporos Rep 13:245–255. https://doi.org/10.1007/s11914-015-0272-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shenoy N, Creagan E, Witzig T, Levine M (2018) Ascorbic acid in cancer treatment: let the Phoenix Fly. Cancer Cell 34:700–706. https://doi.org/10.1016/jccell201807014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Faria LV, Lisboa TP, de Farias DM, Araujo FM, Machado MM, de Sousa RA, Matos MAC, Muñoz RAA, Matos RC (2020) Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chem 319:126509. https://doi.org/10.1016/j.foodchem.2020.126509

    Article  CAS  PubMed  Google Scholar 

  5. da Silva TL, Aguiar-Oliveira E, Mazalli MR, Kamimura ES, Maldonado RR (2017) Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C. Food Chem 224:92–96. https://doi.org/10.1016/jfoodchem201612052

    Article  PubMed  Google Scholar 

  6. Tsierkezos NG, Othman SH, Ritter U, Hafermann L, Knauer A, Köhler JM, Downing C, McCarthy EK (2016) Electrochemical analysis of ascorbic acid, dopamine, and uric acid on noble metal modified nitrogen-doped carbon nanotubes. Sens Actuators B 231:218–229. https://doi.org/10.1016/jsnb201603032

    Article  CAS  Google Scholar 

  7. Klimczak I, Gliszczynska-Wiglo A (2015) Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem 175:100–105. https://doi.org/10.1016/jfoodchem201411104

    Article  CAS  PubMed  Google Scholar 

  8. Rekha K, Murthy BN (2010) Validation and application of an ascorbate oxidase biosensor for the rapid analysis of vitamin C in food and pharmaceutical samples. Food Agric Immunol 21:103–111. https://doi.org/10.1080/09540100903443717

    Article  CAS  Google Scholar 

  9. Fong JFY, Chin SF, Ng SM (2016) A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens Bioelectron 85:844–852. https://doi.org/10.1016/jbios201605087

    Article  CAS  PubMed  Google Scholar 

  10. Chen S, Chi M, Yang Z, Gao M, Wang C, Lu X (2017) Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid. Inorg Chem Front 4:1621–1627. https://doi.org/10.1039/c7qi00308k

    Article  CAS  Google Scholar 

  11. Xu S, Dong X, Chen S, Zhao Y, Shan G, Sun Y, Chen Y, Liu Y (2018) The preparation of high-index facet Au/Cu NRs and their application for colorimetric determination ascorbic acid. Sens Actuators B 281:375–382. https://doi.org/10.1016/jsnb201810114

    Article  Google Scholar 

  12. Fan S, Zhao M, Ding L, Li H, Chen S (2017) Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron 89:846–852. https://doi.org/10.1016/jbios201609108

    Article  CAS  PubMed  Google Scholar 

  13. Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, Talat M, Hasan SH (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156. https://doi.org/10.1016/j.aca.2018.12.024

    Article  CAS  PubMed  Google Scholar 

  14. Su L, Yu X, Cai Y, Kang P, Qin W, Dong W, Mao G, Feng S (2017) Evaluation of fluorogenic substrates for Ni/Co LDHs peroxidase mimic and application for determination of inhibitory effects of antioxidant. Anal Chim Acta 987:98–104. https://doi.org/10.1016/jaca201707064

    Article  CAS  PubMed  Google Scholar 

  15. Chi M, Zhu Y, Jing L, Wang C, Lu X (2019) Fabrication of oxidase-like polyaniline–MnO2 hybrid nanowires and their sensitive colorimetric detection of sulfite and ascorbic acid. Talanta 191:171–179. https://doi.org/10.1016/jtalanta201808061

    Article  CAS  PubMed  Google Scholar 

  16. Kumar M, Dosanjh HS, Sonika B, Singh J, Monir K, Singh H (2020) Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications. Environ Sci Water Res Technol 6:491–514. https://doi.org/10.1039/c9ew00858f

    Article  CAS  Google Scholar 

  17. Kefeni KK, Msagati TAM, Nkambule TT, Mamba BB (2020) Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater Sci Eng C 107:110314. https://doi.org/10.1016/j.msec.2019.110314

    Article  CAS  Google Scholar 

  18. Ortiz-Quiñonez JL, Pal U, Salazar MV (2018) Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co−Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3:14986–15001. https://doi.org/10.1021/acsomega.8b02229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madhuvilakku R, Piraman S (2019) One-dimensional NiFe2O4 nanorods modified with sulfur-rich spherical carbon nanoparticles for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:434. https://doi.org/10.1007/s00604-019-3496-4

    Article  CAS  Google Scholar 

  20. Dimitrijevic T, Vulic P, Manojlovic D, Nikolic AS, Stankovic DM (2016) Amperometric ascorbic acid sensor based on doped ferrites nanoparticles modified glassy carbon paste electrode. Anal Biochem 504:20–26. https://doi.org/10.1016/j.ab.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Liang M, Wei T (2020) Types of nanozymes: materials and activities. In: Yan X (ed) Nanozymology. Nanostructure science and technology. Springer, Singapore

    Google Scholar 

  22. Chaibakhsh N, Moradi-Shoeili Z (2019) Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater Sci Eng C 99:1424–1447. https://doi.org/10.1016/j.msec.2019.02.086

    Article  CAS  Google Scholar 

  23. Su L, Qin W, Zhang H, Ur Z, Ren C, Ma S (2015) The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens Bioelectron 63:384–391. https://doi.org/10.1016/jbios201407048

    Article  CAS  PubMed  Google Scholar 

  24. Lyu H, Zhao X, Yao X, Chen W, Liu Z, Gao L, Fan G, Zhu X, Liu Q, Zhang X, Zhang X (2020) 3,4:9,10-Perylene tetracarboxylic acid-modified zinc ferrite with the enhanced peroxidase activity for sensing of ascorbic acid. Colloids Surf A 586:124250. https://doi.org/10.1016/j.colsurfa.2019.124250

    Article  CAS  Google Scholar 

  25. Ji D, Du Y, Meng H, Zhang L, Huang Z, Hu Y, Li J, Yu F, Li Z (2018) A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine. Sens Actuators B 256:512–519. https://doi.org/10.1016/j.snb.2017.10.070

    Article  CAS  Google Scholar 

  26. Maensiri S, Masingboon C, Boonchom B, Seraphin S (2007) A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater 56:797–800. https://doi.org/10.1016/jscriptamat200609033

    Article  CAS  Google Scholar 

  27. Bonomo M (2018) Synthesis and characterization of NiO nanostructures: a review. J Nanopart Res 20:222–226. https://doi.org/10.1007/s11051-018-4327-y

    Article  CAS  Google Scholar 

  28. Huang G, Du X, Zhang F, Yin D, Wang L (2015) A facile molten-salt route for large-scale synthesis of NiFe2O4 nanoplates with enhanced lithium storage capability. Chem Eur J 21:14140–14145. https://doi.org/10.1002/chem201500910

    Article  CAS  PubMed  Google Scholar 

  29. Maensiri S, Boonchon B (2009) Non-isothermal decomposition kinetics of NiFe2O4 nanoparticles synthetized using egg white solution route. J Therm Anal Calorim 98:879–884. https://doi.org/10.1007/s10973-009-0173-6

    Article  CAS  Google Scholar 

  30. Cannas C, Ardu A, Niznansky D, Peddis D, Picacaluga G, Musini A (2011) Simple and fast preparation of pure maghemite nanopowders through sol–gel self-combustion. J Sol–Gel Sci Technol 60:266–274. https://doi.org/10.1007/s10971-011-2559-8

    Article  CAS  Google Scholar 

  31. Gabal MA, Angari YMA (2009) Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater Chem Phys 115:578–584. https://doi.org/10.1016/j.matchemphys.2008.12.032

    Article  CAS  Google Scholar 

  32. Gabal MA, Angari YMA, Al-Agel FA (2013) Synthesis, characterization, and magnetic properties of Cr-substituted Co–Zn ferrites nanopowders. J Mol Struct 1035:341–347. https://doi.org/10.1016/j.molstruc.2012.10.061

    Article  CAS  Google Scholar 

  33. Kadi M, Mohamed RM (2014) Synthesis and optimization of cubic NiFe2O4 nanoparticles with enhanced saturation magnetization. Ceram Int 40:227–232. https://doi.org/10.1016/j.ceramint.2013.05.128

    Article  CAS  Google Scholar 

  34. Livania MJ, Ghorbani M, Mehdipour H (2018) Preparation of an activated carbon from hazelnut shells and its hybrids with magnetic NiFe2O4 nanoparticles. N Carbon Mater 33:578–586. https://doi.org/10.1016/S1872-5805(18)60358-0

    Article  Google Scholar 

  35. David JP, Elingg T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. J Biol Chem 257:3669–4675

    Google Scholar 

  36. Zhang LP, Hu B, Wang JH (2012) Label-free colorimetric sensing of ascorbic acid based on Fenton reaction with unmodified gold nanoparticle probes and multiple molecular logic gates. Anal Chim Acta 717:127–133. https://doi.org/10.1016/jaca201112037

    Article  CAS  PubMed  Google Scholar 

  37. Yang XH, Ling J, Peng J, Cao QE, Wang L, Ding ZT, Xiong J (2013) Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid. Spectrochim Acta A 106:224–230. https://doi.org/10.1016/jsaa201212097

    Article  CAS  Google Scholar 

  38. Chen J, Ge J, Zhang L, Li Z, Li J, Sun Y, Qu L (2016) Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta 183:1847–1853. https://doi.org/10.1007/s00604-016-1826-3

    Article  CAS  Google Scholar 

  39. Darabdhara G, Sharma B, Das MR, Boukherroub R, Szunerits S (2017) Cu–Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sens Actuators B 238:842–851. https://doi.org/10.1016/jsnb201607106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the INCT of Bioanalytical (CNPq/INCT 465389/2014-7) and CNPQ (Process: 550441/2012-3), the Propesq/UFRGS. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)-Finance Code 001. The electron microscopy analysis were carried out at the UFRGS’s Center of Microscopy and Microanalysis. The authors also acknowledge to the Laboratory of Magnetism (IF-UFRGS) staff for the assistance with the magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lavayen.

Ethics declarations

Conflicts of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ost Fracari, T., Lazzari, N.H., Chaves Ortiz, J. et al. Nickel ferrite nanoparticles on a carbonaceous matrix and their colorimetric assay for ascorbic acid detection. Reac Kinet Mech Cat 130, 463–476 (2020). https://doi.org/10.1007/s11144-020-01780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01780-1

Keywords

Navigation