Skip to main content

Advertisement

Log in

Investigation of Hydrogen Peroxide Formation After Underwater Plasma Discharge

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper reports investigations on the formation of hydrogen peroxide resulting from micro-pulse plasma discharges obtained in pin-to-pin configuration underwater. In particular, this study reports the influence of the discharge regime (cathode regime with and without breakdown, and anode regime) as well as that of the discharge energy (from 10 to 45 mJ per pulse). It has been shown that the H2O2 production is higher for high energy and anode regime. In addition, the variation of the pulse width (from 50 to 500 µs) highlights the dependence of the chemical processes induced by the discharge according to the regime. Considering two different electrode materials (tungsten and platinum), we do not observe any significant influence of the electrode material on the H2O2 production, whereas the injected energy depends on the high voltage electrode material. Finally, the erosion of the electrodes have been studied using in-situ optical microscopy and SEM. It is shown that the erosion mechanisms strongly depend on materials, regimes and the polarity of the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akiyama H (2000) Streamer discharges in liquids and their applications. IEEE Trans Dielectr Electr Insul 7(5):646–653

    Article  CAS  Google Scholar 

  2. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42(5):053001

    Article  Google Scholar 

  3. Locke B et al (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 45(3):882–905

    Article  CAS  Google Scholar 

  4. Locke BR (2009) Special issue on plasmas and liquids. Plasma Process Polym 6(11):711–712

    Article  CAS  Google Scholar 

  5. Šunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8(5):2587–2594

    Article  Google Scholar 

  6. Lukes P, et al (2009) Role of solution conductivity in the electron impact dissociation of H2O induced by plasma processes in the pulsed corona discharge in water. In: Proceedings, 19th international symposium on plasma chemistry

  7. Kirkpatrick MJ, Locke BR (2005) Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind Eng Chem Res 44(12):4243–4248

    Article  CAS  Google Scholar 

  8. Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10(1):82–91

    Article  CAS  Google Scholar 

  9. Grymonpré DR et al (2004) Hybrid gas−liquid electrical discharge reactors for organic compound degradation. Ind Eng Chem Res 43(9):1975–1989

    Article  Google Scholar 

  10. Joshi AA et al (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41(1):3–30

    Article  CAS  Google Scholar 

  11. Lukes P et al (2011) The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water. Plasma Sources Sci Technol 20(3):034011

    Article  Google Scholar 

  12. Lukes P, Appleton AT, Locke BR (2004) Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors. IEEE Trans Ind Appl 40(1):60–67

    Article  CAS  Google Scholar 

  13. Holzer F, Locke BR (2008) Influence of high voltage needle electrode material on hydrogen peroxide formation and electrode erosion in a hybrid gas-liquid series electrical discharge reactor. Plasma Chem Plasma Process 28(1):1–13

    Article  CAS  Google Scholar 

  14. Sahni M, Locke BR (2006) Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors. Ind Eng Chem Res 45(17):5819–5825

    Article  CAS  Google Scholar 

  15. Medodovic S, Locke BR (2009) Primary chemical reactions in pulsed electrical discharge channels in water. J Phys D Appl Phys 42(4):049801–049801

    Article  Google Scholar 

  16. Locke BR, Shih K-Y (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20(3):034006

    Article  Google Scholar 

  17. Locke BR, Thagard SM (2012) Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chem Plasma Process 32(5):875–917

    Article  CAS  Google Scholar 

  18. Potocký Š, Saito N, Takai O (2009) Needle electrode erosion in water plasma discharge. Thin Solid Films 518(3):918–923

    Article  Google Scholar 

  19. Međedović S, Locke BR (2006) Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge. Appl Catal B 67(3–4):149–159

    Article  Google Scholar 

  20. Lukeš P et al (2006) Erosion of needle electrodes in pulsed corona discharge in water. Czech J Phys 56(2):B916–B924

    Article  Google Scholar 

  21. Goryachev V, Ufimtsev A, Khodakovskii A (1997) Mechanism of electrode erosion in pulsed discharges in water with a pulse energy of∼ 1. J Tech Phys Lett 23(5):386–387

    Article  Google Scholar 

  22. Liu Y et al (2016) Comparison and evaluation of electrode erosion under high-pulsed current discharges in air and water mediums. IEEE Trans Plasma Sci 44(7):1169–1177

    Article  CAS  Google Scholar 

  23. Kirkpatrick MJ, Locke BR (2006) Effects of platinum electrode on hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind Eng Chem Res 45(6):2138–2142

    Article  CAS  Google Scholar 

  24. Patel MR et al (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66(9):4104–4111

    Article  CAS  Google Scholar 

  25. Dibitonto DD et al (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103

    Article  CAS  Google Scholar 

  26. Xu ZY et al (2018) An electrochemical discharge drilling method of small deep holes. Int J Adv Manuf Technol 95(5–8):3037–3044

    Article  Google Scholar 

  27. Yerokhin AL et al (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122(2–3):73–93

    Article  CAS  Google Scholar 

  28. Kumar PD et al (2011) Erosion and lifetime evaluation of molybdenum electrode under high energy impulse current. IEEE Trans Plasma Sci 39(4):1180–1186

    Article  CAS  Google Scholar 

  29. Anik M, Osseo-Asare K (2002) Effect of pH on the anodic behavior of tungsten. J Electrochem Soc 149(6):B224–B233

    Article  CAS  Google Scholar 

  30. Rond C et al (2018) Time-resolved diagnostics of a pin-to-pin pulsed discharge in water: pre-breakdown and breakdown analysis. J Phys D Appl Phys 51(33):335201

    Article  Google Scholar 

  31. Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15(5):327–328

    Article  CAS  Google Scholar 

  32. Rond C et al (2018) Influence of applied voltage and electrical conductivity on underwater pin-to-pin pulsed discharge. J Phys D Appl Phys 52(2):025202

    Article  Google Scholar 

  33. Depetris-Wery M, Catonné J-C (2014) Potentiels standards d'oxydo-réduction en solution aqueuse-Application aux traitements de surface en voie humide

  34. Matsuoka K et al (2008) Degradation of polymer electrolyte fuel cells under the existence of anion species. J Power Sources 179(2):560–565

    Article  CAS  Google Scholar 

  35. Ceccato P (2009) Filamentary plasma discharge inside water: initiation and propagation of a plasma in a dense medium. Ecole Polytechnique X.

Download references

Acknowledgment

This work bearing the reference ANR-11-LABX-086 has benefited from State aid managed by the National Research Agency under the Future Investments program with the Reference Number ANR-18-IDEX-0001

The authors would like to thank the technical support in LSPM and LPL for providing the SEM, EDX and UV–Vis analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.S., Rond, C., Vega, A. et al. Investigation of Hydrogen Peroxide Formation After Underwater Plasma Discharge. Plasma Chem Plasma Process 40, 955–969 (2020). https://doi.org/10.1007/s11090-020-10084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10084-0

Keywords

Navigation