Skip to main content
Log in

Finite-Time Synchronization of Hybrid-Coupled Delayed Dynamic Networks via Aperiodically Intermittent Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we investigate finite-time synchronization for a class of delayed dynamic networks with hybrid coupling via aperiodically intermittent control. First, more general models of dynamic networks with transmission delay and self-feedback delay are given. Second, a lemma with a newly added parameter is proposed to ensure finite-time synchronization of dynamic networks via an aperiodically intermittent control scheme, in which the newly added parameter can make the convergence time shorter. Third, by constructing a novel piecewise Lyapunov function and applying linear matrix inequality technique, some sufficient conditions ensuring finite-time synchronization for delayed dynamic networks are obtained. Moreover, the convergence time is affected by some decision parameters besides the newly added parameter, one of which is a maximum uncontrolled ratio generated by the definition of aperiodic intermittent control itself. Finally, a numerical example is presented to verify its validity and rationality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    MATH  Google Scholar 

  2. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep Rev Sect Phys Lett 424:175–308

    MathSciNet  MATH  Google Scholar 

  3. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    MathSciNet  MATH  Google Scholar 

  4. Wang F, Sun Y (2008) Self-organizing peer-to-peer social networks. Comput Intell 24:213–233

    MathSciNet  Google Scholar 

  5. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou C (2002) The synchronization of chaotic systems. Phys Rep 366:1–101

    MathSciNet  MATH  Google Scholar 

  6. Wei G, Jia Y (2002) Synchronization-based image edge detection. Europhys Lett 59:814–819

    Google Scholar 

  7. Xie Q, Chen G, Bollt EM (2002) Hybrid chaos synchronization and its application in information processing. Math Comput Modell 35:145–163

    MathSciNet  MATH  Google Scholar 

  8. Zhao M, Zhang H, Wang Z, Liang H (2014) Synchronization between two general complex networks with time-delay by adaptive periodically intermittent pinning control. Neurocomputing 144:215–221

    Google Scholar 

  9. Ma X, Wang J (2016) Pinning outer synchronization between two delayed complex networks with nonlinear coupling via adaptive periodically intermittent control. Neurocomputing 199:197–203

    Google Scholar 

  10. Lu J, Chen G (2005) A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans Autom Control 50:841–846

    MathSciNet  MATH  Google Scholar 

  11. Wu Q, Zhang H, Xu L, Yan Q (2015) Finite-time synchronization of general complex dynamical networks. Asian J Control 17:1643–1653

    MathSciNet  MATH  Google Scholar 

  12. Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction–diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51:3486–3510

    MathSciNet  MATH  Google Scholar 

  13. Wang Z, Jiang Y, Li H (2015) Impulsive synchronization of time delay bursting neuron systems with unidirectional coupling. Complexity 21:38–46

    MathSciNet  Google Scholar 

  14. Liu X, Chen T (2011) Cluster synchronization in directed networks via intermittent pinning control. IEEE Trans Neural Netw 22:1009–1020

    Google Scholar 

  15. Mei J, Jiang M, Xu W, Wang B (2013) Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer Simul 18:2462–2478

    MathSciNet  MATH  Google Scholar 

  16. Luo M, Zhang J (2009) Event-driven service oriented framework for integrative serviceability management of networked manufacturing systems. In: 2009 IEEE/ASME international conference on advanced intelligent mechatronics, Suntec Convention and Exhibition Center, Singapore, July 14–17, pp 392–397

  17. Jeeva Sathya Theesar S, Balasubramaniam P (2014) Secure communication via synchronization of Lure systems using sampled-data controller. Circuits Syst Signal Process 33:37–52

    Google Scholar 

  18. Jing T, Chen F (2016) Finite-time lag synchronization of delayed neural networks via periodically intermittent control. Complexity 21:211–219

    MathSciNet  Google Scholar 

  19. Mei J, Jiang M, Wang X, Han J, Wang S (2014) Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J Frankl Inst 351:2691–2710

    MathSciNet  MATH  Google Scholar 

  20. Zhang D, Shen Y, Mei J (2017) Finite-time synchronization of multi-layer nonlinear coupled complex networks via intermittent feedback control. Neurocomputing 225:129–138

    Google Scholar 

  21. Zhang W, Li C, Huang T, Xiao M (2015) Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Netw 71:105–111

    MATH  Google Scholar 

  22. Zhang W, Yang S, Li C, Zhang W, Yang X (2018) Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. Neural Netw 104:93–103

    MATH  Google Scholar 

  23. Liu X, Chen T (2015) Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE Trans Neural Netw Learn Syst 26:2396–2407

    MathSciNet  Google Scholar 

  24. Cai S, Liu Z, Xu F, Shen J (2009) Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit. Phys Lett A 373:3846–3854

    MathSciNet  MATH  Google Scholar 

  25. Li C, Chen G (2004) Synchronization in general complex dynamical networks with coupling delays. Phys A 343:263–278

    MathSciNet  Google Scholar 

  26. Zhou J, Chen T (2006) Synchronization in general delayed dynamical networks. IEEE Trans Circuits Syst I Regul Pap 53:733–744

    MathSciNet  MATH  Google Scholar 

  27. Cao J, Chen G, Li P (2008) Global synchronization in an array of delayed neural networks with hybrid coupling. IEEE Trans Syst Man Cybern 38:488–498

    Google Scholar 

  28. Oguchi T, Nijmeijer H, Yamamoto T (2008) Synchronization in networks of chaotic systems with time-delay coupling. Chaos 18:037108

    MathSciNet  MATH  Google Scholar 

  29. He W, Cao J (2010) Exponential synchronization of hybrid coupled networks with delayed coupling. IEEE Trans Neural Netw 21:571–583

    Google Scholar 

  30. Zhang W, Tang Y, Fang J, Zhu W (2011) Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances. Choas 21:043137

    MATH  Google Scholar 

  31. Wong WK, Zhang W, Tang Y, Xu X (2013) Stochastic synchronization of complex networks with mixed impulses. IEEE Trans Circuits Syst I Regul Pap 60:2657–2667

    MathSciNet  Google Scholar 

  32. Huang C, Lu J, Ho DWC, Zhai G, Cao J (2020) Stabilization of probabilistic Boolean networks via pinning control strategy. Inf Sci 510:205–217

    MathSciNet  Google Scholar 

  33. Li Y, Lou J, Wang Z, Alsaadi FE (2018) Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J Frankl Inst 355:6520–6530

    MathSciNet  MATH  Google Scholar 

  34. Wan X, Yang X, Tang R, Cheng Z (2019) Exponential synchronization of semi-Markovian coupled neural networks with mixed delays via tracker information and quantized output controller. Neural Netw 118:321–331

    MATH  Google Scholar 

  35. Yang X, Cao J (2010) Finite-time stochastic synchronization of complex networks. Appl Math Model 34:3631–3641

    MathSciNet  MATH  Google Scholar 

  36. Bowong S, Kakmeni M, Koina R (2006) Chaos synchronization and duration time of a class of uncertain chaotic systems. Math Comput Simul 71:212–228

    MathSciNet  MATH  Google Scholar 

  37. Wang H, Ye J, Miao Z, Jonckheere EA (2016) Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication. Trans Inst Meas Control 40:1177–1187

    Google Scholar 

  38. Wang X, Liu X, She K, Zhong S (2017) Finite-time lag synchronization of master–slave complex dynamical networks with unknown signal propagation delays. J Frankl Inst 354:4913–4929

    MathSciNet  MATH  Google Scholar 

  39. Zhang W, Yang X, Xu C, Feng J, Li C (2018) Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters. IEEE Trans Neural Netw Learn Syst 29:3761–3771

    MathSciNet  Google Scholar 

  40. Zhang D, Mei J, Miao P (2017) Global finite-time synchronization of different dimensional chaotic systems. Appl Math Model 48:303–315

    MathSciNet  MATH  Google Scholar 

  41. Jing T, Zhang D, Mei J, Fan Y (2019) Finite-time synchronization of delayed complex dynamic networks via aperiodically intermittent control. J Frankl Inst 356:5464–5484

    MathSciNet  MATH  Google Scholar 

  42. Li B (2014) Finite-time synchronization for complex dynamical networks with hybrid coupling and time-varying delay. Nonlinear Dyn 76:1603–1610

    MathSciNet  MATH  Google Scholar 

  43. Liu M, Jiang H, Hu C (2017) Finite-time synchronization of delayed dynamical networks via aperiodically intermittent control. J Frankl Inst 354:5374–5397

    MathSciNet  MATH  Google Scholar 

  44. Fan Y, Liu H, Zhu Y, Mei J (2016) Fast synchronization of complex dynamical networks with time-varying delay via periodically intermittent control. Neurocomputing 205:182–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Doctoral Foundation of Henan Polytechnic University 761107/011), and Scientific Research Foundation for the Staff of Xinhua College of Sun Yat-sen University (2019KYQN14).

Appendix

Appendix

Proof of Lemma 4

Denote \(M_0=V^{1-\kappa }(0)+\frac{\varsigma }{\nu _1}\) and \(W(t)=\exp \{(1-\kappa )\nu _1t\}V^{1-\kappa }(t),~\text{ for }~t\ge 0\). Let \(Q(t)=W(t)-M_0+\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\). It is easy to see that \(Q(t)=0,~~\text{ for }~~t=0.\)

In the following, we will prove that \(Q(t)\le 0,~~\text{ for }~~t\in [0,s_0).\)

For \(\forall t\in [0,s_0)\), it has

$$\begin{aligned} \begin{aligned} \dot{Q}(t)&\le (1-\kappa )V^{-\kappa }(t)\exp \{(1-\kappa )\nu _1t\}\big (-\varsigma V^\kappa (t)+\nu _{1}V(t)\big )+\nu _1(1-\kappa )\\&\quad \exp \{(1-\kappa )\nu _1t\}V^{1-\kappa }(t)+\varsigma (1-\kappa )\exp \{(1-\kappa )\nu _1t\}\\&=0. \end{aligned} \end{aligned}$$

Hence, \(Q(t)\le Q(0)=0,~~\text{ for }~~t\in [0,s_0).\)

Let \(W_1(t)=\exp \{(1-\kappa )\nu _1t\}\exp \{-(1-\kappa )(\nu _1+\nu _2)(t-s_0)\}V^{1-\kappa }(t)=\exp \{(1-\kappa )\nu _1s_0\}\exp \{-(1-\kappa )\nu _2(t-s_0)\}V^{1-\kappa }(t)\), \(Q_1(t)=W_1(t)-M_0+\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\exp \{-(1-\kappa )(\nu _1+\nu _2)(t-s_0)\}=W_1(t)-M_0+\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1s_0\}\exp \{-(1-\kappa )\nu _2(t-s_0)\}.\) Next, we will prove that for \(t\in [s_0,t_1),~Q_1(t)\le 0.\)

For \(\forall t\in [s_0,t_1)\), we can obtain

$$\begin{aligned} \begin{aligned} \dot{Q}_1(t)\le&-\frac{\varsigma }{\nu _1}((1-\kappa )\nu _2)\exp \{(1-\kappa )\nu _1s_0\}\exp \{-(1-\kappa )\nu _2(t-s_0)\}\\ \le&0.\\ \end{aligned} \end{aligned}$$

Hence, \(Q_1(t)\le Q_1(s_0)=Q(s_0)\le 0.\)

Together with \(Q_1(t)\le 0\), for \(t\in [s_0,t_1)\), we can obtain

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \{(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big ). \end{aligned} \end{aligned}$$

Note that \(Q(t)\le 0\), for \(~t\in [0,s_0)\), we have

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \{(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big ). \end{aligned} \end{aligned}$$

So, for \(t\in [0,t_1)\), it has

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \{(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big ), \end{aligned} \end{aligned}$$

Similarly, we can prove that for \(t\in [t_1, s_1)\),

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \{(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big ). \end{aligned} \end{aligned}$$

Suppose

$$\begin{aligned} \begin{aligned} Q_2(t)&=W(t)-\exp \{(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\big ). \end{aligned} \end{aligned}$$

It is easy to prove that \(Q_2(t)\le 0\), \(\forall t\in [t_1, s_1)\).

For any \(t\in [s_1, t_2)\), by taking \(W_2(t)=W(t)\exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\exp \{-(1-\kappa )(\nu _1+\nu _2 )(t-s_1)\}=\exp \{(1-\kappa )\)\(\nu _1(s_0+s_1-t_1)\}\exp \{-(1-\kappa )\nu _2(t-(s_0+s_1-t_1))\}V^{1-\kappa }(t)\) and \(Q_3(t)=W_2(t)-M_0+\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )p_1t\}\exp \{-(1-\kappa )(\nu _1+\nu _2 )(t_1-s_0)\}\)\(\exp \{-(1-\kappa )(\nu _1+\nu _2 )(t-s_1)\}=W_2(t)-M_0+\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1(s_0+s_1-t_1)\}\exp \{-(1-\kappa )\nu _2(t-(s_0+s_1-t_1))\}\), we can verify \(Q_3(t)\le Q_3(s_1)\le 0\) similar to the proof of \(Q_1(t)\le 0,~t\in [s_0,t_1).\)

Therefore,

$$\begin{aligned} \begin{aligned} W_2(t)&\le M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\exp \{-(1-\kappa )(\nu _1+\nu _2)(t_1-s_0)\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)(t-s_1)\}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \{(1-\kappa )(\nu _1+\nu _2)[(t_1-s_0)+(t-s_1)]\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)[(t_1-s_0)+(t-s_1)]\}\big ). \end{aligned} \end{aligned}$$

By induction, for any integer m, we can deduce the following estimation of W(t) for any t.

For \(t_m\le t<s_m\), we can get

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \big \{(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}(t_k-s_{k-1})\big \}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \big \{-(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}(t_k-s_{k-1})\big \}\big ), \end{aligned} \end{aligned}$$

and for \(s_m\le t<t_{m+1}\), we can get

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \big \{(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}[(t_k-s_{k-1})+(t-s_m)]\big \}\big (M_0-\frac{\varsigma }{\nu _1}\\&\quad \times \exp \{(1-\kappa )\nu _1t\}\exp \big \{-(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}[(t_k-s_{k-1})+(t-s_m)]\big \}\big ). \end{aligned} \end{aligned}$$

For \(t_m\le t<s_m\), by applying Definition 2, it has

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \big \{(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}\frac{t_k-s_{k-1}}{t_k-t_{k-1}}(t_k-t_{k-1})\big \}\big (M_0-\frac{\varsigma }{\nu _1}\\&\quad \times \exp \{(1-\kappa )\nu _1t\}\exp \big \{-(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}\frac{t_k-s_{k-1}}{t_k-t_{k-1}}(t_k-t_{k-1})\big \}\big )\\&\le \exp \{(1-\kappa )(\nu _1+\nu _2)\Psi t\}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)\Psi t\}\big ). \end{aligned} \end{aligned}$$

For \(s_m\le t<t_{m+1}\), by applying Definition 2 and Lemma 1, it has

$$\begin{aligned} \begin{aligned} W(t)&\le \exp \big \{(1-\kappa )(\nu _1+\nu _2)\sum \limits _{k=1}^{m}\big [\frac{t_k-s_{k-1}}{t_k-t_{k-1}}(t_k-t_{k-1})+\frac{t_{m+1}-s_m}{t_{m+1}-t_m}(t-t_m)\big ]\big \}\\&\quad \times \big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\exp \big \{-(1-\kappa )(\nu _1+\nu _2)\Psi \sum \limits _{k=1}^{m}\big ((t_k-t_{k-1})\\&\quad +(t-t_m)\big )\big \}\big )\\&\le \exp \{(1-\kappa )(\nu _1+\nu _2)\Psi t \}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\exp \{-(1-\kappa )(\nu _1\\&\quad +\nu _2)\Psi t\}\big ). \end{aligned} \end{aligned}$$

From the definition of W(t), we can obtain

$$\begin{aligned} \begin{aligned} V^{1-\kappa }(t)\exp \{(1-\kappa )\nu _1t\}&\le \exp \{(1-\kappa )(\nu _1+\nu _2)\Psi t \}\big (M_0-\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1t\}\\&\quad \times \exp \{-(1-\kappa )(\nu _1+\nu _2)\Psi t\}\big ). \end{aligned} \end{aligned}$$

With Lemma 3, the settling time \(T^*\) can be obtained in the following form \(V^{1-\kappa }(0)+\frac{\varsigma }{\nu _1}=\frac{\varsigma }{\nu _1}\exp \{(1-\kappa )\nu _1T^*\}\exp \{-(1-\kappa )(\nu _1+\nu _2)\Psi T^*\}\).

From (10), one can obtain that

$$\begin{aligned} T^*=\frac{\ln (1+\frac{\nu _1}{\varsigma }V^{1-\kappa }(0))}{(1-\kappa )\big ( \nu _1-(\nu _1+\nu _2)\Psi \big )}. \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, T., Zhang, D. & Jing, T. Finite-Time Synchronization of Hybrid-Coupled Delayed Dynamic Networks via Aperiodically Intermittent Control. Neural Process Lett 52, 291–311 (2020). https://doi.org/10.1007/s11063-020-10245-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10245-4

Keywords

Navigation