Skip to main content
Log in

Effect of Electrodeposition Current and Pulse Parameter on Surface Mechanical and Electrochemical Behavior of Ni–W Alloy Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni–W alloy coatings have various applications because they are capable of replacing hard chromium coatings due to their corrosion, oxidation, wear, and hardness properties. Moreover, these alloys demonstrate excellent mechanical and thermal stability at high temperatures leading to possible specialized applications of such coatings. In this study, the effect of pulse frequency and current density on the structure and properties of electrodeposited Ni–W coating were investigated. Pulse electro-co-deposition technique was employed to synthesize Ni–W alloy coatings by varying pulse frequency and current density. The deposition process was performed in the newly established deposition bath that does not contain surfactants and stress-relieving agents. The Ni–W-coated samples were evaluated to determine surface mechanical (microhardness and wear) and electrochemical properties. Phase formation, microstructure, and compositional analysis of Ni–W alloy coatings were examined by XRD, SEM, and EDS, respectively. Microstructure examination revealed that morphology of the coating varied with pulsed frequency and current density. An increase in the current density at fixed pulse frequency improved the surface mechanical properties (hardness and wear properties) owing to higher W content, fine, and dense structure of the coating. The maximum hardness (920 HV) and wear resistance were observed in the Ni–W coating that was obtained at the current density of 60 mA cm−2 and frequency of 2 kHz. Electrochemical polarization test and EIS study carried out in 3.5 wt pct NaCl solution reveal that a decrease in corrosion resistance of the coating is due to finer morphology or strained matrix whereas higher W content improves the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F-J. He, M. Wang, and X. Lu: Trans. Nonferrous Metals Soc. China, 2006, vol. 16, pp. 1289–1294.

    CAS  Google Scholar 

  2. L. Anicai: Corros. Rev, 2007, vol. 25, pp. 607–620.

    CAS  Google Scholar 

  3. E. Brooman: Met. Finish, 2000, vol. 98, pp. 39–45.

    CAS  Google Scholar 

  4. S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai: Trans. Mater. Res. Soc. Jpn., 2016, vol. 41, pp. 35–39.

    CAS  Google Scholar 

  5. A. Jones, J. Hamann, A. Lund, and C. Schuh: Plat. Surf. Finish, 2010, vol. 97, pp. 52.

    CAS  Google Scholar 

  6. N.P. Wasekar and G. Sundararajan: Wear, 2015, vol. 342, pp. 340–348.

    Google Scholar 

  7. J.L. Stojak, J. Fransaer, and J.B. Talbot: Adv. Electrochem. Sci. Eng., 2001, vol. 7, pp. 193-223.

    CAS  Google Scholar 

  8. R.K. Saha and T.I. Khan: Surf. Coat. Technol., 2010, vol. 205, pp. 890-895.

    CAS  Google Scholar 

  9. M. Obradovic, J. Stevanovic, A. Despic, R. Stevanovic, and J. Stoch: J. Serb. Chem. Soc, 2001, vol. 66, pp. 899-912.

    CAS  Google Scholar 

  10. M. Obradovic, J. Stevanovic, A.R. Despic, and R. Stevanovic: J. Serb. Chem. Soc., 1999, vol. 64, pp. 245-257.

    CAS  Google Scholar 

  11. D.R. Gabe: J. Appl. Electrochem., 1997, vol. 27, pp. 908-915.

    CAS  Google Scholar 

  12. O. Younces and E. Gileady: J. Electrochem. Soc., 2002, vol. 149, pp. 100-111.

    Google Scholar 

  13. E. Slavcheva, W. Mokwa, and U. Schnakenberg: Electrochim. Acta, 2005, vol. 50, pp. 5573-5580.

    CAS  Google Scholar 

  14. I. Mizushima, P. Tang, H. Hansen, and M. Somers: Electrochim. Acta, 2005, vol. 51, pp. 888-896.

    CAS  Google Scholar 

  15. T. Yamasaki, P. Schlossmacher, K. Ehrlich, and Y. Oginoi: NanoStruct. Mater., 1998, vol. 10, pp. 375-388.

    CAS  Google Scholar 

  16. H. Lowe, W. Ehrfeld, and J. Diebel: Proc. SPIE., 1997, vol. 168, pp. 3223-3226.

    Google Scholar 

  17. V.B. Singh, L.C. Singh, and P.K. Tikoo: J. Electrochem. Soc., 1980, vol. 127, pp. 590-596.

    CAS  Google Scholar 

  18. https://www.enthone.com_PWA 36975: Electroplated NiW—thin deposit (Enloy Ni-500).

  19. O. Younes and E. Gileadi: Electrochem. Solid-State Lett., 2000, vol. 3, pp. 543-545.

    CAS  Google Scholar 

  20. L. Namburi: M.Sc. Thesis, Louisiana State University, 2001.

  21. M. Donten, Z. Stojek, and H. Cesiulis: J. Electrochem. Soc., 2003, vol. 150, pp. 95-98.

    Google Scholar 

  22. O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and Gileadi: Langmuir., 2001, vol. 17, pp. 8270–75.

  23. L. Zhu, O. Younes, N. Ashkenasy, Y. Shacham-Diamand, and E. Gileadi: Appl. Surf. Sci., 2002, vol. 200, pp. 1-14.

    CAS  Google Scholar 

  24. O. Younes-Metzler, L. Zhu, and E. Gileadi: Electrochim. Acta, 2003, vol. 48 (18), pp. 2551-2562.

    CAS  Google Scholar 

  25. M. Metikoš-Huković, Z. Grubač, N. Radić, and A. Tonejc: J. Mol. Catal. A Chem., 2006, vol. 249, pp. 172–180.

    Google Scholar 

  26. E. Hristova, M. Mitov, R. Rashkov, M. Arnaudova, and A. Popov: Bulg. Chem. Commun, 2008, vol. 40, pp. 291–294.

    CAS  Google Scholar 

  27. A. Kawashima, E. Akiyama, H. Habazaki, and K. Hashimoto: Mater. Sci. Eng. A, 1997, vol. 226, pp. 905–909.

    Google Scholar 

  28. G.S. Tasić, U. Lačnjevac, M.M. Tasić, M.M. Kaninski, V.M. Nikolić, D.L. Žugić, and V.D. Jović: Int. J. Hydrog. Energy, 2013, vol. 38, pp. 4291–4297.

    Google Scholar 

  29. C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, and V. Pérez-Herranz: Chem. Eng. Trans., 2013, vol. 32, pp. 865–870.

    Google Scholar 

  30. H. Cesiulis and E.J. Podlaha-Murphy: MaterialsScience (Medziagotyra), 2003, vol. 9, pp. 329-333.

    Google Scholar 

  31. T. Yamasaki, P. Schloβmacher, E. Erlich, Y. Ogino: Nano Structured Mater., 1998, vol. 10, pp. 375-388.

    CAS  Google Scholar 

  32. S. Shajahan and A. Basu: Int. J. Mater. Res., 2019, vol. 110, pp. 1160-1167.

    CAS  Google Scholar 

  33. E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Szczerba, J. Guspiel, H. Koscielny, and M. Kot: Mater.Chem. Phys., 2016, vol. 173, pp. 524-533.

    CAS  Google Scholar 

  34. K.-H. Hou and Y.-C. Chen: Appl. Surf. Sci., 2011, vol. 257, pp. 6340–6346.

    CAS  Google Scholar 

  35. K.R. Sriraman, S. Ganesh-Sundara-Raman, and S.K. Seshadri: Mater. Sci. Eng. A, 2006, vol. 418, pp. 303–311.

    Google Scholar 

  36. K.A. Kumar, G.P. Kalaignann, and V.S. Muralidharan: Appl. Surf. Sci., 2012, vol. 259, pp. 231–237.

    Google Scholar 

  37. M.Q. Arganaraz, S. Ribotta, M. Folquer, L. Gassa, G. Benítez, M. Vela, and R. Salvarezza: Electrochim. Acta, 2011, vol. 56, pp. 5898–5903.

    CAS  Google Scholar 

  38. H. Goldasteh and S. Rastegari: Surf. Coat. Technol., 2014, vol. 259, pp. 393–400.

    CAS  Google Scholar 

  39. S. Franz, A. Marlot, P. Cavallotti, and D. Landolt: Trans. IMF, 2008, vol. 86, pp. 92–97.

    CAS  Google Scholar 

  40. A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat: Corrosion Science, 2011, vol. 53, pp. 1066–1071.

    CAS  Google Scholar 

  41. P.N. Wasekar, S.M. Latha, M. Ramakrishna, D.S. Rao, and G. Sundararajan: Mater. Design, 2016, vol. 112, pp. 140–150.

    CAS  Google Scholar 

  42. D. Landolt and M. Datta: Surf. Technol., 1985, vol. 25, pp. 97-110.

    Google Scholar 

  43. A.M. El-Sherik, U. Erb, and J. Page: Surf. Coat. Technol., 1997, vol. 88, pp. 70-78.

    CAS  Google Scholar 

  44. B.Wu, Z Liu, A Keigler, and J. Harrell: J. Electrochem. Soc., 2005, vol. 152, pp. 272–276.

    Google Scholar 

  45. C.A. Schuh, T.G. Nieh, and H. Iwasaki: Acta Mater., 2003, vol. 51, pp. 431–443

    CAS  Google Scholar 

  46. Y.-K. Ko, G.-H. Chang, and J.-H. Lee: Solid State Phenomena, 2007, vol. 124-126, pp. 1589-1592.

    Google Scholar 

  47. M. Stern: J. Electrochem. Soc., 1958, vol. 105, pp. 638–647.

    CAS  Google Scholar 

  48. R. Haldhar, D. Prasad, A. Saxena, and R. Kumar: Sustain. Chem. Pharmacy, 2018, vol. 9, pp. 95-105.

    Google Scholar 

  49. R. Haldhar, D. Prasad, and A. Saxena: J. Environ. Chem. Eng., 2018, vol. 6, pp. 5230-5238.

    CAS  Google Scholar 

  50. R. Haldhar, D. Prasad, A. Saxena and A. Kaur: Eur. Phys. J. Plus, 2018, vol. 133, pp. 0–18.

  51. R. Haldhar, D. Prasad, A. Saxena, and P. Singh: Mater. Chem. Front., 2018, vol. 2, pp. 1225-1237.

    CAS  Google Scholar 

  52. R. Haldhar, D. Prasad, and A. Saxena: J. Environ. Chem. Eng., 2018, vol. 6, pp. 2290-301.

    CAS  Google Scholar 

  53. R. Haldhar, D. Prasad and N. Bhardwaj: Arab. J. Sci. Eng., 2020, vol. 45, pp. 131-141.

    CAS  Google Scholar 

  54. R. Haldhar, D. Prasad, and N. Bhardwaj: J. Adhes. Sci. Technol., 2019, vol. 33, pp. 1169-1183.

    CAS  Google Scholar 

  55. A. Saxena, D. Prasad, and R. Haldhar, G. Singh and A. Kumar: J. Mol. Liq., 2018, vol. 258, pp. 89-97.

    CAS  Google Scholar 

  56. A. Saxena, D. Prasad, and R. Haldhar: J. Mater. Sci., 2018, vol. 53, pp. 1-13.

    Google Scholar 

Download references

Acknowledgments

Partial financial support of this work from the Council of Scientific and Industrial Research, India (Grant No. (0755)/17/EMR-II), is gratefully acknowledged. XRD-Texture laboratory at Department of Metallurgical and Materials Engineering, NIT Rourkela, supported by DST-FIST (Grant No: SR/FST/ETI-344-/2013 C and G) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Basu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolle, M.K., Shajahan, S. & Basu, A. Effect of Electrodeposition Current and Pulse Parameter on Surface Mechanical and Electrochemical Behavior of Ni–W Alloy Coatings. Metall Mater Trans A 51, 3721–3731 (2020). https://doi.org/10.1007/s11661-020-05787-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05787-0

Navigation