Skip to main content

Advertisement

Log in

Distribution of Grain Boundary Carbides in Inconel 617 Subjected to Creep at 900 °C and 950 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A post-creep deformation analysis is carried out on the nickel-based superalloy Inconel 617 in order to identify the grain boundary carbide (GBC) distributions for different creep stresses and temperatures and to determine the related microstructural changes in terms of grain size and associated changes in the material’s creep ductility as a function of GBC distribution. Creep tests were conducted at two temperatures 900 °C and 950 °C for stresses of 35, 50, and 62 MPa. Post-creep rupture, carbide size, density, and spacing were measured as a function of grain boundary orientation with respect to the loading direction (i.e., trace angle). It is observed that non-uniform carbide distributions were present in the five test conditions associated with an increase in the carbide size, density, and area fraction along grain boundaries perpendicular to loading conditions (tensile boundaries) when compared to those on parallel boundaries (compressive boundaries). The magnitude of preferential distribution of GBC towards tensile boundaries is observed to govern the ability of the compressive boundaries to migrate which facilitates grain elongation in the loading direction which leads to increased creep ductility. A critical magnitude of preferential GBC distribution is determined below which compressive boundaries remain relatively pinned with a low grain boundary spacing. This condition corresponds to creep deformation accommodated by grain boundary sliding only, leading to a relatively low creep rupture strain. Above that magnitude, compressive boundaries are permitted to slide and migrate and, as such, facilitate grain elongation giving rise to increasing magnitude of total creep strain. A criterion for significant preferential distribution resulting in changes to grain morphology and mechanical response, has been proposed in the form of a temperature-stress map which identifies the creep loading conditions associated with significant preferential distribution prior to creep rupture. The critical GBC distribution coupled with the concept of identifying temperature and stress combinations resulting in significant preferential distribution provides guidelines for creep testing for the purpose of extrapolating short-term test data to long-term response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Mankins, W. L., J. C. Hosier, and T. H. Bassford: Metall. Trans., 1974, 5(12), pp.2579-2590

    Article  CAS  Google Scholar 

  2. Y. Guo, B. Wang, and S. Hou: Acta Metall. Sin., 2013, 26(3), pp. 307-312

    Article  CAS  Google Scholar 

  3. Li, X., Le Pierres, R., & Dewson, S. J: In Proceedings of ICAPP, 2006, 6, pp. 4-8

    Google Scholar 

  4. Kihara, Shigemitsu, John B. Newkirk, Akira Ohtomo, and Yoshinori Saiga: Metall. Trans. A, 1980, 11(6), pp.1019-1031

    Article  Google Scholar 

  5. Sabol, G. P., and R. Stickler: Phys. Status Solidi B, 1969, 35(1), pp.11-52.

    Article  CAS  Google Scholar 

  6. Furillo, F. T., J. M. Davidson, J. K. Tien, and L. A. Jackman: Mater. Sci. Eng., 1979, 39(2), pp.267-273

    Article  CAS  Google Scholar 

  7. Wu, X. J., and A. K. Koul: Metall. Mater. Trans. A, 1995, 26(4), pp.905-914

    Article  Google Scholar 

  8. Raj, R., and M. F. Ashby: Metall. Mater. Trans. B, 1972, 3(7), pp.1937-1942

    Article  Google Scholar 

  9. Cook, R.H.: Nucl. Technol., 1984, 66(2), pp.283-288

    Article  CAS  Google Scholar 

  10. Wright, R. N.: Idaho National Laboratory, 2006, No. INL/EXT-06-11750

  11. Schlegel S, Hopkins S, Young E, Cole J, Lillo T, and Frary M: Metall. Mater. Trans. A, 2009, 40(12), pp. 2812-2823

    Article  Google Scholar 

  12. Howell, P. R., J. O. Nilsson, and G. L. Dunlop: J. Mater. Sci., 1978, 13(9), pp.2022-2028

    Article  CAS  Google Scholar 

  13. Kang, J-H., and P. E. J. Rivera: Comput. Mater. Sci., 2013, 67, pp. 364-372

    Article  CAS  Google Scholar 

  14. Zhang, S. Z., M. M. Li, and R. Yang: Mater. Charact., 2011, 62(12), pp.1151-1157

    Article  CAS  Google Scholar 

  15. Rahman, S., G. Priyadarshan, K. S. Raja, C. Nesbitt, and M. Misra: Mech. Mater., 2009, 41(3), pp. 261-270

    Article  Google Scholar 

  16. Special Metals: 2005, Publication Number SMC-029

  17. Benz, J. K., L.J. Carroll, J. K. Wright, R.N. Wright, and T. M. Lillo: Metall. Mater. Trans. A, 2014, 45(7), pp. 3010-3022

    Article  CAS  Google Scholar 

  18. Osthoff, Walter, Hans Schuster, Philip J. Ennis, and Hubertus Nickel: Nucl. Technol., 1984, 66(2), pp.296-307

    Article  CAS  Google Scholar 

  19. Kim, W-G, J-Y Park, I.M.W. Ekaputra, M-H. Kim, and Y.-W. Kim (2014) Procedia Mater. Sci. 3, pp. 1285-1290

    Article  CAS  Google Scholar 

  20. Chomette S, JM Gentzbittel, B Viguier (2010) J. Nucl. Mater. 399, pp. 266-274

    Article  CAS  Google Scholar 

  21. Lillo, T. M., and R. N. Wright: ASME Pressure Vessels Piping Conf., 2015, American Society of Mechanical Engineers

  22. Rettberg, L. H., and T. M. Pollock: Acta Mater., 2014, 73, pp.287-297

    Article  CAS  Google Scholar 

  23. Koul AK, JPA Immarigeon: Metall. Trans. A, 1985, 16(1), pp. 51-57

    Article  Google Scholar 

  24. Iwashita, C. H., and R. P. Wei: Acta Mater., 2000, 48(12), pp.3145-3156

    Article  CAS  Google Scholar 

  25. He, L. Z., Q. Zheng, X. F. Sun, G. C. Hou, H. R. Guan, and Z. Q. Hu: J. Mater. Sci., 2005, 40(11), pp.2959-2964

    Article  CAS  Google Scholar 

  26. ASTM Standard E112-12, 2012, https://doi.org/10.1520/e0112-12

  27. Srolovitz, D. J., M. P. Anderson, G. S. Grest, and P. S. Sahni: Acta Metall., 1984, 32(9), pp.1429-1438

    Article  CAS  Google Scholar 

  28. Song X, G Liu, N Gu (1999) Mater. Sci. Eng. A 270(2), pp. 178-182

    Article  Google Scholar 

  29. Chang, Kunok, Weiming Feng, and Long-Qing Chen: Acta Mater., 2009, 57(17), pp.5229-5236

    Article  CAS  Google Scholar 

  30. Wang, G., D. S. Xu, E. J. Payton, N. Ma, R. Yang, M. J. Mills, and Y. Wang: Acta Mater., 2011, 59(11), pp. 4587-4594

    Article  CAS  Google Scholar 

  31. Markuszewicz, M., J. Groyecki, J. Lassota, and A. Zawada: AIME MET SOC TRANS, 1966, 236(2), pp. 196-200

    CAS  Google Scholar 

  32. Wang, Dong, Chang Liu, Jian Zhang, and Langhong Lou: Matrix, 2012, 6, pp. 23

    Google Scholar 

  33. Gavriljuk VG (2003) Mater. Sci. Eng. A 345, pp. 81-89

    Article  Google Scholar 

  34. Lapera M, D Spader, and H Ghonem (2020) Mater. Sci. Eng. A, 769:138421

    Article  CAS  Google Scholar 

  35. Spader D, M Lapera, H Ghonem (2020) Mater. Sci. Eng. A 769, 138355

    Article  CAS  Google Scholar 

  36. Pleune, T. T.: PhD diss., 1999

Download references

Acknowledgments

The authors would like to acknowledge the Rhode Island Space Grant for their support (Fellowship to Daniel Spader) during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamouda Ghonem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spader, D., Maciejewski, K. & Ghonem, H. Distribution of Grain Boundary Carbides in Inconel 617 Subjected to Creep at 900 °C and 950 °C. Metall Mater Trans A 51, 3473–3487 (2020). https://doi.org/10.1007/s11661-020-05798-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05798-x

Navigation