Skip to main content
Log in

The Effect of Salt on the Interactions Between Droplets in Water-in-Oil Microemulsions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction enthalpies, entropies and Gibbs energies between microemulsion droplets for {water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-decane}, {water/NaCl/AOT/n-decane} and {water/CaCl2/AOT/n-decane}, with the molar ratio ω of water to AOT being 26.3 and the concentration of salt in water being 0.02 mol·L–1, have been investigated by measurements of liquid–liquid phase equilibrium and isothermal titration microcalorimetry. The interaction enthalpies determined from isothermal titration microcalorimetry and liquid–liquid equilibrium are consistent. The interaction was found to be enhanced as the ionic strength increases. From the data of liquid–liquid equilibriums collected in the critical region, the critical exponent β corresponding to the width of the coexistence curve was determined, which showed good agreement with the 3D-Ising value and supported the pseudo binary solution proposal for these multiple microemulsions. A thermodynamic approach based on the Carnahan–Starling–van der Waals type equation was improved and used to deduce the interaction properties between droplets in the microemulsions. Salt effects on the microemusion phase equilibria are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moulik, S.P., Paul, B.K.: Structure, dynamics and transport properties of microemulsions. Adv. Colloid Interface Sci. 78, 99–105 (1998). https://doi.org/10.1016/S0001-8686(98)00063-3

    Article  CAS  Google Scholar 

  2. Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45, 89–121 (2000). https://doi.org/10.1016/S0169-409X(00)00103-4

    Article  CAS  PubMed  Google Scholar 

  3. Biasutti, M.A., Abuin, E.B., Silber, J.J., Correa, N.M., Lissi, E.A.: Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv. Colloid Interface Sci. 136, 1–24 (2008). https://doi.org/10.1016/j.cis.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  4. Eastoe, J., Warne, B.: Nanoparticle and polymer synthesis in microemulsions. Curr. Opin. Colloid Interface Sci. 1, 800–805 (1996). https://doi.org/10.1016/S1359-0294(96)80084-7

    Article  CAS  Google Scholar 

  5. Garti, N.: Microemulsions as microreactors for food applications. Curr. Opin. Colloid Interface Sci. 8, 197–211 (2003). https://doi.org/10.1016/S1359-0294(03)00022-0

    Article  CAS  Google Scholar 

  6. Kotlarchyk, M., Chen, S.H., Huang, J.S., Kim, M.W.: Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering. Phys. Rev. A 29, 2054 (1984). https://doi.org/10.1103/PhysRevA.29.2054

    Article  CAS  Google Scholar 

  7. Dozier, W.D., Kim, M.W., Klein, R.: Light scattering in a dilute microemulsion. II. Radius dependence of interactions. J. Chem. Phys. 87, 1455 (1987). https://doi.org/10.1063/1.453282

    Article  CAS  Google Scholar 

  8. Cai, H., Yi, C., An, X., Shen, W.: The critical behavior of water + AOT + decane microemulsion with various molar ratios of water to AOT. J. Chem. Thermodyn. 41, 639–644 (2009). https://doi.org/10.1016/j.jct.2008.12.019

    Article  CAS  Google Scholar 

  9. Domschke, M., Kraska, M., Feile, R., Stühn, B.: AOT microemulsions: droplet size and clustering in the temperature range between the supercooled state and the upper phase boundary. Soft Matter 9, 11503–11512 (2013). https://doi.org/10.1039/C3SM51632F

    Article  CAS  Google Scholar 

  10. Du, C., He, W., Yin, T., Shen, W.: Volumetric properties of water/AOT/isooctane microemulsions. Langmuir 30, 15135–15142 (2014). https://doi.org/10.1021/la5041344

    Article  CAS  PubMed  Google Scholar 

  11. Rouch, J., Safouane, A., Tartaglia, P., Chen, S.H.: The critical region of water-in-oil microemulsions: new light scattering results. Trends Colloid Interface Sci. 3, 279–286 (1989)

    Article  Google Scholar 

  12. Kotlarchyk, M., Chen, S.H., Huang, J.S.: Critical behavior of a microemulsion studied by small-angle neutron scattering. Phys. Rev. A 28, 508 (1983). https://doi.org/10.1103/PhysRevA.28.508

    Article  CAS  Google Scholar 

  13. Roux, D., Bellocq, A.M.: Experimental evidence for an apparent field variable in a critical microemulsion system. Phys. Rev. Lett. 52, 1895–1898 (1984). https://doi.org/10.1103/PhysRevLett.52.1895

    Article  CAS  Google Scholar 

  14. Yamazaki, K., Imai, M., Suzuki, I.: Water solubilization capacity and mean emulsion size of phospholipid-based isooctane–alcohol W/O microemulsion. Colloids Surf. A 293, 241–246 (2007). https://doi.org/10.1016/j.colsurfa.2006.07.038

    Article  CAS  Google Scholar 

  15. Elles, C.G., Levinger, N.E.: Reverse micelles solubilizing DMSO and DMSO/water mixtures. Chem. Phys. Lett. 317, 624–630 (2000). https://doi.org/10.1016/S0009-2614(99)01435-9

    Article  CAS  Google Scholar 

  16. Zhang, X., Dong, J., Zhang, G., Hong, X., Li, X.: The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions. J. Colloid Interface Sci. 285, 336–341 (2005). https://doi.org/10.1016/j.jcis.2004.11.054

    Article  CAS  PubMed  Google Scholar 

  17. Hamada, K., Ikeda, T., Kawai, T., Kon-No, K.: Ionic strength effects of electrolytes on solubilized states of water in AOT reversed micelles. J. Colloid Interface Sci. 233, 166–170 (2001). https://doi.org/10.1006/jcis.2000.7236

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Rio, L., Leis, J.R., Mejuto, J.C., Pena, M.E., Iglesias, E.: Effects of additives on the internal dynamics and properties of water/AOT/isooctane microemulsions. Langmuir 10, 1676–1683 (1994). https://doi.org/10.1021/la00018a013

    Article  CAS  Google Scholar 

  19. Mejuto, J.C., Morales, J., Moldes, O.A., Cid, A.: Effects of additives upon percolation temperature in AOT-based microemulsions. J. Appl. Solution Chem. Model. 3, 106–129 (2014). https://doi.org/10.6000/1929-5030.2014.03.02.8

    Article  CAS  Google Scholar 

  20. Hait, S.K., Moulik, S.P., Rodgers, M.P., Burke, S.E., Palepu, R.: Physicochemical studies on microemulsions. 7. Dynamics of percolation and energetics of clustering in water/AOT/isooctane and water/AOT/decane w/o microemulsions in presence of hydrotopes (sodium salicylate, α-naphthol, β-naphthol, resorcinol, catechol, hydroquinone, pyrogallol and urea) and bile salt (sodium cholate). J. Phys. Chem. B 105, 7145–7154 (2001). https://doi.org/10.1021/jp0105084

    Article  CAS  Google Scholar 

  21. Amaral, C.L.C., Itri, R., Politi, M.J.: Structure determination of AOT/n-hexane/water/urea reversed micelles by light and small angle X-ray scattering. Langmuir 12, 4638–4643 (1996). https://doi.org/10.1021/la951051q

    Article  CAS  Google Scholar 

  22. Rouvière, J., Couret, J.M., Lindheimer, A., Lindheimer, M., Brun, B.: Structure des agrégats inverses d’AOT—II—effets de sel sur les micelles inverses. J. Chim. Phys. 76, 297–301 (1979). https://doi.org/10.1051/jcp/1979760297

    Article  Google Scholar 

  23. Hou, M.J., Kim, M., Shah, D.O.: A light scattering study on the droplet size and interdroplet interaction in microemulsions of AOT–oil–water system. J. Colloid Interface Sci. 123, 398–412 (1988). https://doi.org/10.1016/0021-9797(88)90261-5

    Article  CAS  Google Scholar 

  24. Wang, X., Chen, Z., Shen, W.: The volumetric properties of water/AOT/isooctane microemulsions with larger-size droplets. J. Chem. Thermodyn. 130, 129–139 (2019). https://doi.org/10.1016/j.jct.2018.09.034

    Article  CAS  Google Scholar 

  25. Wang, X., Liu, D., Wang, M., Chen, Z., Yin, T., Shen, W.: Liquid–liquid phase equilibrium and the effect of a water-soluble polymer on the interaction between droplets in water-in-oil microemulsions. Soft Matter 14, 9950–9958 (2018). https://doi.org/10.1039/C8SM01562G

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X., Chen, Z., Shen, W.: The volumetric properties of water/AOT/isooctane microemulsions with small-size droplets. Colloids Surf. A 529, 893–900 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.076

    Article  CAS  Google Scholar 

  27. Cabos, C., Delord, P.: Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar solution. J. Physique Lett. 41, 455–458 (1980). https://doi.org/10.1051/jphyslet:019800041018045500

    Article  CAS  Google Scholar 

  28. Leung, R., Shah, D.O.: Solubilization and phase equilibria of water-in-oil microemulsions: I. Effects of spontaneous curvature and elasticity of interfacial films. J. Colloid Interface Sci. 120, 320–329 (1987). https://doi.org/10.1016/0021-9797(87)90360-2

    Article  Google Scholar 

  29. Hou, M.J., Shah, D.O.: Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir 3, 1086–1096 (1987). https://doi.org/10.1021/la00078a036

    Article  CAS  Google Scholar 

  30. Derouiche, A., Tondre, C.: Correlation between maximum water/electrolyte solubilization and conductivity percolation in AOT reversed micelles. J. Dispers. Sci. Technol. 12, 517–530 (1991). https://doi.org/10.1080/01932699108913150

    Article  CAS  Google Scholar 

  31. Aschauer, R., Beysens, D.: Critical behavior of a three-component microemulsion. Phys. Rev. E 47, 1850–1855 (1993). https://doi.org/10.1103/PhysRevE.47.1850

    Article  CAS  Google Scholar 

  32. An, X., Feng, J., Shen, W.: Critical behavior of a pseudobinary system for a three-component microemulsion. J. Phys. Chem. 100, 16674–16677 (1996). https://doi.org/10.1021/jp961287i

    Article  CAS  Google Scholar 

  33. An, X., Wang, B.Y., Wang, N., Shen, W.: The coexistence curves for quarternary microemulsion of water + KCl + sodium di(2-ethyl-1-hexyl) sulphosuccinate + decane in the critical region. J. Chem. Thermodyn. 37, 31–36 (2005). https://doi.org/10.1016/j.jct.2004.07.026

    Article  CAS  Google Scholar 

  34. Amararene, A., Gindre, M., Le Huérou, J.Y., Urbach, W., Valdez, D., Waks, M.: Adiabatic compressibility of AOT [sodium bis(2-ethylhexyl)sulfosuccinate] reverse micelles: analysis of a simple model based on micellar size and volumetric measurements. Phys. Rev. E 61, 682–689 (2000). https://doi.org/10.1103/PhysRevE.61.682

    Article  CAS  Google Scholar 

  35. Francesconi, R., Bigi, A., Rubini, K., Comelli, F.: Molar heat capacities, densities, viscosities, and refractive indices of poly(ethylene glycols) + 2-methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 52, 2020–2025 (2007). https://doi.org/10.1021/je7003066

    Article  CAS  Google Scholar 

  36. Álvarez, E., Gómez-Díaz, D., Rubia, M.D.L., Navaza, J.M.: Densities and viscosities of aqueous ternary mixtures of 2-(methylamino) ethanol and 2-(ethylamino) ethanol with diethanolamine, triethanolamine, N-methyldiethanolamine, or 2-amino-1-methyl-1-propanol from 298.15 to 323.15 K. J. Chem. Eng. Data 51, 955–962 (2006). https://doi.org/10.1021/je050463q

    Article  CAS  Google Scholar 

  37. Zheng, P., Ma, Y., Peng, X., Yin, T., An, X., Shen, W.: Determination of the interaction enthalpy between microemulsion droplets by isothermal titration microcalorimetry. Langmuir 27, 12280–12283 (2011). https://doi.org/10.1021/la2026686

    Article  CAS  PubMed  Google Scholar 

  38. Zheng, P., Ma, Y., Fan, D., Peng, X., Yin, T., Zhao, J., Shen, W.: Solvent dependent interactions between droplets in water-in-oil microemulsions. Soft Matter 10, 7977–7984 (2014). https://doi.org/10.1039/C4SM01141D

    Article  CAS  PubMed  Google Scholar 

  39. Fan, D., Zheng, P., Ma, Y., Yin, T., Zhao, J., Shen, W.: Effects of water content and chain length of n-alkane on the interaction enthalpy between the droplets in water/sodium bis(2-ethylhexyl)-sulfosuccinate/n-alkane microemulsions. Soft Matter 11, 2885–2892 (2015). https://doi.org/10.1039/C5SM00319A

    Article  CAS  PubMed  Google Scholar 

  40. An, X., Huang, Y., Shen, W.: Critical behaviour of {water + n-nonane + sodium di(2-ethyl-1-hexyl)sulphosuccinate}microemulsions. J. Chem. Thermodyn. 34, 1107–1116 (2002). https://doi.org/10.1006/jcht.2002.0985

    Article  CAS  Google Scholar 

  41. Agazzi, F.M., Correa, N.M., Rodriguez, J.: Molecular dynamics simulation of water/BHDC cationic reverse micelles. Structural characterization, dynamical properties, and influence of solvent on intermicellar interactions. Langmuir 30, 9643–9653 (2014). https://doi.org/10.1021/la501964q

    Article  CAS  PubMed  Google Scholar 

  42. Gazzillo, D., Giacometti, A., Fantoni, R., Sollich, P.: Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions. Phys. Rev. E 74, 051407 (2006). https://doi.org/10.1103/PhysRevE.74.051407

    Article  CAS  Google Scholar 

  43. Wang, J., Cerdeirina, C.A., Anisimov, M.A., Sengers, J.V.: Principle of isomorphism and complete scaling for binary-fluid criticality. Phys. Rev. E 77, 031127 (2008). https://doi.org/10.1103/PhysRevE.77.031127

    Article  CAS  Google Scholar 

  44. Sengers, J.V., Shanks, J.G.: Experimental critical-exponent values for fluids. J. Stat. Phys. 137, 857–877 (2009). https://doi.org/10.1007/s10955-009-9840-z

    Article  CAS  Google Scholar 

  45. Yin, T., Wang, M., Tao, X., Shen, W.: Liquid–liquid phase equilibria and interactions between droplets in water-in-oil microemulsions. Langmuir 32, 13464–13471 (2016). https://doi.org/10.1021/acs.langmuir.6b03496

    Article  CAS  PubMed  Google Scholar 

  46. Vrij, A., Nieuwenhuis, E.A., Fijnaut, H.M., Agterof, W.G.M.: Application of modern concepts in liquid state theory to concentrated particle dispersions. Faraday Discuss. Chem. Soc. 65, 101–113 (1978). https://doi.org/10.1039/DC9786500101

    Article  CAS  Google Scholar 

  47. Kleshchanok, D., Strunk, H., Tuinier, R., Lang, P.R.: Interactions and two-phase coexistence in nonionic micellar solutions as determined by static light scattering. Phys. Chem. Chem. Phys. 8, 869–876 (2006). https://doi.org/10.1039/B513225H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Projects 21773063, 21403067 and 21373085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Fan, D., Liu, D. et al. The Effect of Salt on the Interactions Between Droplets in Water-in-Oil Microemulsions. J Solution Chem 49, 522–536 (2020). https://doi.org/10.1007/s10953-020-00974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00974-4

Keywords

Navigation