Skip to main content
Log in

Cavity-trapped electrons: lithium doped tetracyano-2,6-naphthoquinodimethane (TNAP) systems

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interesting features in the lithium based electride motived us to explore new species with electride properties. To achieve this goal, the tetracyano-2,6-naphthoquinodimethane (TNAP) species has been used as backbone to investigate systematic addition of lithium atoms to the TNAP backbone (Lin@TNAP (n = 1–4) species) through density functional theory (DFT) simulation. After finding the most stable geometries for each Lin@TNAP (n = 1–4) species by full optimization process, we show their electronic-structural features in this work. In the next step, the properties of electron-density-laplacian (∇2ρ(r)), non-linear-optical (NLO), non-nuclear-attractor (NNA), and electron-localization-function (ELF) have been studied to incorporate the reported Lin@TNAP (n = 1–4) species in two different categories, salt or electride. The obtained outcomes present that the Li1@TNAP and the Li2@TNAP molecules are the lithium-salt. In contrast, the Li3@TNAP and the Li4@TNAP molecules are lithium-based electrides along with the isolated electrons in the molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zurek E, Edwards PP (2009) Hoffmann R. A molecular perspective on lithium–ammonia solutions. Angew Chem Int Ed. 48:8198–8232

    Article  CAS  Google Scholar 

  2. Dye JL (2003) Electrons as anions. Science. 301:607–608

    Article  CAS  Google Scholar 

  3. Dye JL (1969) Metal-ammonia solutions, Colloque Weyl II, Ithaca, New York. Butterworths, London, pp 1–17

    Google Scholar 

  4. Dye JL, DeBacker MG, Dorfman LM (1970) Pulse radiolysis studies XVIII Spectrum of the solvated electron in the systems ethylenediamine–water and ammonia–water. J Chem Phys 52:6251–6258

    Article  CAS  Google Scholar 

  5. Dye JL (1990) Electrides: ionic salts with electrons as the anions. Science 247:663–668

    Article  CAS  Google Scholar 

  6. Kaplan TA, Harrison JF, Dye JL, Rencsok R (1995) Relation of Li(NH3)4 to electrides. Phys Rev Lett 75:978–978

    Article  CAS  Google Scholar 

  7. Dye JL (1991) Electrides and alkalides-comparison with metal solutions. J Phys IV 1:259–282

    Google Scholar 

  8. Toda Y, Hirayama H, Kuganathan N, Torrisi A, Sushko PV, Hosono H (2013) Activation and splitting of carbon dioxide on the surface of an inorganic electride material. Nat Commun 4:2378–2385

    Article  Google Scholar 

  9. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S-W, Hara M, Hosono H (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940

    Article  CAS  Google Scholar 

  10. Kitano M, Kanbara S, Inoue Y, Kuganathan N, Sushko PV, Yokoyama T, Hara M, Hosono H (2015) Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat Commum 6:6731–6739

    Article  CAS  Google Scholar 

  11. Lu Y, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, Kitano M, Hosono H (2016) Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. J Am Chem Soc 138:3970–3973

    Article  CAS  Google Scholar 

  12. Dye JL (1993) Anionic electrons in electrides. Nature. 365:10–11

    Article  Google Scholar 

  13. Singh DJ, Krakauer H, Haas C, Pickett WE (1993) Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e. Nature 365:39–42

    Article  CAS  Google Scholar 

  14. Dye JL (1997) Electrides: from 1D Heisenberg chains to 2D pseudo-metals. Inorg Chem 36:3816–3826

    Article  CAS  Google Scholar 

  15. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  16. Marqués M, Ackland GJ, Lundegaard LF, Stinton G, Nelmes RJ, McMahon MI, Contreras-García J (2009) Potassium under pressure: a pseudobinary ionic compound. Phys Rev Lett 103:115501–1155014

    Article  Google Scholar 

  17. Lee K, Kim SW, Toda Y, Matsuishi S, Hosono H (2013) Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature. 494:336–340

    Article  CAS  Google Scholar 

  18. Dale SG, Otero-de-la Roza A, Johnson ER (2014) Density-functional description of electrides. Phys Chem Chem Phys 16:14584–14593

    Article  CAS  Google Scholar 

  19. Garcia-Borràs M, Solà M, Luis JM, Kirtman B (2012) Electronic and vibrational nonlinear optical properties of five representative electrides. J Chem Theory Comput 8:2688–2697

    Article  Google Scholar 

  20. Chen W, Li Z-R, Wu D, Li Y, Sun C-C, Gu FL (2005) The structure and the large nonlinear optical properties of Li@calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  21. Wang Y-F, Li Z-R, Wu D, Sun C-C, Gu F-L (2010) Excess electron is trapped in a large single molecular cage C60F60. J Comput Chem 31:195–203

    Article  Google Scholar 

  22. Torkpoor I, Heidari Nezhad Janjanpour M, Salehi N, Gharibzadeh F, Edjlali L (2018) Insight into Y@X2B8 (Y = Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: a computational study. Chem Rev Lett 1:2–8

    Google Scholar 

  23. Gharibzadeh F, Gohari S, Nejati K, Hashemzadeh B, Mohammadiyan S (2018) The Be atom doping: an effective way to improve the Li-atom adsorption in boron rich nanoflake of B24. Chem Rev Lett 1:16–22

    Google Scholar 

  24. Postils V, Garcia-Borràs M, Solà M, Luis JM, Matito E (2015) On the existence and characterization of molecular electrides. Chem Commun 51:4865–4868

    Article  CAS  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  26. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  27. Grimme S, Antony J, Ehrlich S, Krieg S (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154122

    Article  Google Scholar 

  28. Edwards PP, Anderson PA, Thomas JM (1996) Dissolved alkali metals in zeolites. Acc Chem Res 29:23–29

    Article  CAS  Google Scholar 

  29. Champagne B, Perpete EA, Jacquenmin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push−pull π-conjugated systems. J Phys Chem A 104:4755–4763

    Article  CAS  Google Scholar 

  30. Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell ππ-conjugated systems. J Chem Phys 122:114315–114326

    Article  Google Scholar 

  31. Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) Second hyperpolarizability (γ) of singlet diradical system: dependence of γ on the diradical character. J Phys Chem A 109:885–891

    Article  CAS  Google Scholar 

  32. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–590

    Article  Google Scholar 

  33. Bader RFW (1990) In: Halpen J, Green MLH (eds) The international series of monographs of chemistry. Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Vessally.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2489 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vessally, E., Majedi, S., Hosseinian, A. et al. Cavity-trapped electrons: lithium doped tetracyano-2,6-naphthoquinodimethane (TNAP) systems. J Mol Model 26, 118 (2020). https://doi.org/10.1007/s00894-020-04384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04384-7

Keywords

Navigation