Skip to main content
Log in

TDDFT Study of the Influence of C20 Fullerene on Optical Properties of BODIPY and Two its Analogs: AlDIPY, GaDIPY

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, it is tried to improve electrical, optical, and non-linear optical (NLO) properties of boron-dipyrromethene (BODIPY) as a very optically active molecule. The results showed that two analogs of BODIPY, i.e., the AlDIPY and GaDIPY, have electrical properties and optical activity comparable to those of BODIPY. Next, improvement of the electrical and optical properties of BODIPY, AlDIPY, and GaDIPY was investigated using the C20 fullerene, as an electronegative fragment, instead of two F atoms. The results showed considerable improvement in the electrical properties of these molecules. Compatible with high electronegativity of C20 fullerene, evident charge transfer (CT) from BODIPY, AlDIPY, and GaDIPY to C20 fullerene was seen. Promising results were observed when using the C20 to modify the optical properties of BODIPY, AlDIPY, and GaDIPY. In particular, the optical properties of BODIPY were enriched in the presence of C20. This molecule causes the creation of two absorption lines in visible region that did not exist before. The solvent influence on the optical activity of BODIPY-C20 showed that, in the visible region, the λmax line is affected by the polarity of the solvent and increasing solvent dielectric constant cause a blue shift in this region. Finally, the NLO properties were calculated for all mentioned molecules, which indicated remarkable improvement in the NLO properties in the presence of C20 fullerene. The results of this research showed that the designed molecules are suitable for photosensitizer uses because of their NLO properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.C. Benniston, G. Copley, Lighting the way ahead with boron dypiromethene (Bodipy) dyes. Physic. Chem. Chem. Physic. 11, 4121–4131 (2009)

    Google Scholar 

  2. S.G. Awuahab, Y. You, Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv. 2, 11169–11183 (2012)

    Article  Google Scholar 

  3. N. Boens, V. Leen, W. Dehaen, Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012)

    Article  CAS  Google Scholar 

  4. T. Kowada, H. Maeda, K. Kikuchi, BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 44, 4953–4972 (2015)

    Article  CAS  Google Scholar 

  5. A. Kamkaew, S.H. Lim, H.B. Lee, L. Voon Kiew, L.Y. Chung, K. Burgess, BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 42, 77–88 (2013)

    Article  CAS  Google Scholar 

  6. S.G. Awuahab, Y. You, Boron dipyrromethene (BODIPY)-based photosensitizers for hotodynamic therapy. RSC Adv. 2, 11169–11183 (2012)

    Article  Google Scholar 

  7. W. Qin, M. Baruah, A. Stefan, M. Van der Auweraer, N. Boens, Photophysical properties of BODIPY-derived hydroxyaryl fluorescent pH probes in solution. ChemPhysChem 6, 2343–2351 (2005)

    Article  CAS  Google Scholar 

  8. D. Frath, J.E. Yarnell, G. Ulrich, F.N. Castellano, R. Ziessel, ChemPhysChem 14, 3348–3354 (2013)

    Article  CAS  Google Scholar 

  9. G. Ulrich, A. Barsella, A. Boeglin, S. Niu, R. Ziessel, ChemPhysChem 15, 2693–2700 (2014)

    Article  CAS  Google Scholar 

  10. M.L. Agazzi, J.E. Durantini, N.S. Gsponer, A.M. Durantini, S.G. Bertolotti, E.N. Durantini, Light-harvesting antenna and proton-activated photodynamic effect of a novel BODIPY−fullerene C60 dyad as potential antimicrobial agent. ChemPhysChem 20, 1–17 (2019)

    Article  Google Scholar 

  11. E.N. Kaya, B. Köksoy, S. Yeşilot, M. Durmuş, Purple silicon(IV) phthalocyanine axially substituted with BODIPY groups. Dyes Pigm. 172, 107867 (2020)

    Article  Google Scholar 

  12. Y. Liu, L. Yang, C. Ma, A. Tangb, Dyes Pigm. 173, 107981 (2020)

    Article  CAS  Google Scholar 

  13. A. Ortiz, Triarylamine-BODIPY derivatives: a promising building block as hole transporting materials for efficient perovskite solar cells. Dyes Pigm. 171, 107690 (2019)

    Article  CAS  Google Scholar 

  14. T. Rappitsch, I. Klimant, S.M. Borisov, Bright far-red emitting BODIPYs via extension with conjugated fluorene and carbazole motifs. Dyes Pigm. 174, 108037 (2020)

    Article  CAS  Google Scholar 

  15. T. Xu, C. Yan, Y. Wu, C. Yuan, X. Shao, Decorating BODIPY with electron-rich unit THDTAP: an ICT-based fluorometric sensor toward peroxide, acid, and electrochemical stimuli. Dyes Pigm. 168, 235–247 (2019)

    Article  CAS  Google Scholar 

  16. P. Harris, Fullerene-related structure of commercial glassy carbons. Philos. Mag. 84, 3159 (2004)

    Article  CAS  Google Scholar 

  17. R.F. Curl, R.E. Smalley, Probing C60. Science 242, 1017 (1988)

    Article  CAS  Google Scholar 

  18. D. Vincent, J. Cruickshank, Optical limiting with C60 and other fullerenes. Appl. Opt. 36, 7794–7798 (1997)

    Article  CAS  Google Scholar 

  19. D.K. Palit, A.V. Sapre, J.P. Mittal, C.N.R. Rao, Photophysical properties of the fullerenes, C60 and C70. Chem. Phys. Lett. 195, 1–6 (1992)

    Article  CAS  Google Scholar 

  20. J.W. Arbogast, A.P. Darmanyan, C.S. Foote, F.N. Diederich, R.L. Whetten, Y. Rubin, M.M. Alvarez, S.J. Anz, Photophysical properties of sixty atom carbon molecule (C60). J. Phys. Chem. 95, 11–12 (1991)

    Article  CAS  Google Scholar 

  21. F. Lin, E.S. Sørensen, C. Kallin, A.J. Berlinsky, Handb. Nanophysic.: Clust.Fuller. 29–1, 29–12 (2014)

    Google Scholar 

  22. H. Kawabata, H. Tachikawa, DFT Study on the interaction of the smallest fullerene C20 with lithium ions and atoms. Carbon Res. C 3, 15 (2017)

    Article  Google Scholar 

  23. F. Tahmaszade, H.R. Shamlouei, Effect of C20 nanocage on electrical, optical and structural properties of tetraphenylporphyrin with Zn and Mg central metal. Polyhedron 157, 310–315 (2019)

    Article  CAS  Google Scholar 

  24. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physic. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  26. M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian Inc (Wallingford, CT, 2009)

    Google Scholar 

  27. O'boyle NM, Tenderholt AL, Langner. KM, (2008). J. Comput. Chem., 29, 839.

  28. E. Runge, E.K. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  CAS  Google Scholar 

  29. E. Gross, W. Kohn, Phys. Rev. Lett. 55, 2850 (1985)

    Article  CAS  Google Scholar 

  30. M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439 (1998)

    Article  CAS  Google Scholar 

  31. J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys.Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

  32. J.D. Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys 128, 084106 (2008)

    Article  Google Scholar 

  33. M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003)

    Article  CAS  Google Scholar 

  34. M.J.G. Peach, T. Helgaker, P. Saiek, T.W. Keal, O.B. Lutnas, D.J. Tozer, N.C. Handy, Assessment of a Coulomb-attenuated exchange–correlation energy functional. Phys. Chem. Chem. Phys 8, 558–562 (2006)

    Article  CAS  Google Scholar 

  35. A.D. Buckingham, Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys. 12, 107–142 (1967)

    CAS  Google Scholar 

  36. Yuan Q, Zhao Y-P, Li L, Wang T (2009). J Phys Chem C, 113: 6107–6113

  37. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shamlouei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostadhosseini, N., Shamlouei, H.R. & Bahrami, H. TDDFT Study of the Influence of C20 Fullerene on Optical Properties of BODIPY and Two its Analogs: AlDIPY, GaDIPY. J Inorg Organomet Polym 30, 4160–4169 (2020). https://doi.org/10.1007/s10904-020-01568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01568-9

Keywords

Navigation