Skip to main content

Advertisement

Log in

In vivo bioactivity assessment of strontium-containing soda-lime-borate glass implanted in femoral defect of rat

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Most of previous works studied the bioactivity of tertiary soda-lime-borate as in vitro method, but, there have been no previous studies investigated the in vivo compatibility of such glass. This work was mainly aimed at in vivo assessment of bone formation of tertiary soda-lime-borate bioactive glass doped with Sr. the glass composition was based on 60 B2O3–20 Na2O–(20-x) CaO–xSrO (wt%), where, x = 0 and 10 wt% (samples encoded B0 and BS, respectively). The in vivo test was conducted in femoral bone defect of Sprague-Dawley adult male rats after 3 and 6 weeks post-surgery using the histological analyses and bone formation markers (alkaline phosphatase (ALP) and osteocalcin (OCN)). Moreover, the possible systemic toxicity was studied using different biochemical analyses (alanine transaminase, aspartate transaminase, urea and creatinine). The result of bone markers showed that serum OCN level increased in rat implanted with sample B0 than that observed in sample BS at 3 and 6 weeks post-implantation, while this finding was reversed in ALP activity. In vivo bioactivity test showed that implantation of all borate glasses did not demonstrate local or general complications in all rats, and they exhibited nearly complete bone mineralization. However, BS glass was formed more new bone % than B0 one in long implantation time. In conclusion, the synthesized bioactive borate glasses were safe materials, and introducing of Sr in the glass was enhanced formation of new bone throughout long time of implantation. Accordingly, this glass can be used as a potential substitute for bone regenerative materials and a hosting for strontium ions delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.L. Hench et al., Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5(6), 117–141 (1971)

    Google Scholar 

  2. Kaur et al., A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. Part A 102(1), 254–274 (2014)

    Google Scholar 

  3. W. Huang et al., Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Phys. Chem. Glasses 47(6), 647–658 (2006)

    CAS  Google Scholar 

  4. A. Yao et al., In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J. Am. Ceram. Soc. 90(1), 303–306 (2007)

    CAS  Google Scholar 

  5. Y. Lin et al., Angiogenic effects of borate glass microfibers in a rodent model. J. Biomed. Mater. Res. Part A 102(12), 4491–4499 (2014)

    Google Scholar 

  6. Z. Xie et al., Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model. Antimicrob. Agents Chemother. 57(7), 3293–3298 (2013)

    PubMed  PubMed Central  CAS  Google Scholar 

  7. P. Balasubramanian et al., Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 38(3), 855–869 (2018)

    CAS  Google Scholar 

  8. L.A. Haro Durand et al., In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2-CaO-P2O5-Na2O system. J. Mater. Chem. B 2(43), 7620–7630 (2014)

    PubMed  CAS  Google Scholar 

  9. A. Abdelghany, H. El Batal, F. Ezz El Din, Bone bonding ability behavior of some ternary borate glasses by immersion in sodium phosphate solution. Ceram. Int. 38(2), 1105–1113 (2012)

    CAS  Google Scholar 

  10. A.M. Abdelghany, F.H. El, Batal, H.A. El Batal, Zinc containing borate glasses and glass-ceramics: search for biomedical applications. Process. Appl. Ceram 8, 185–193 (2014)

    CAS  Google Scholar 

  11. F.H. Margha, A.M. Abdelghany, Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives. Process. Appl. Ceram 6(4), 183–192 (2012)

    CAS  Google Scholar 

  12. F. H. El-Batal, et al., In Vitro bioactivity behavior of some borate glasses and their glass-Ceramic derivatives Containing Zn2+, Ag+ or Cu2+ by immersion in phosphate solution and their anti-Microbial activity. Silicon 10(3), 943–957 (2018)

    CAS  Google Scholar 

  13. F.H. ElBatal, M.A. Ouis, H.A. ElBatal, Comparative studies on the bioactivity of some borate glasses and glass–ceramics from the two systems: Na2O–CaO–B2O3 and NaF–CaF2–B2O3. Ceram. Int. 42(7), 8247–8256 (2016)

    CAS  Google Scholar 

  14. S. Zhao et al., Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 53, 379–391 (2015)

    PubMed  CAS  Google Scholar 

  15. H.. Hu et al., Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly (lactic-co-glycolic acid) dressing loaded with vitamin e in vivo and in vitro. ACS Appl. Mater. Interfaces 10(27), 22939–22950 (2018)

    PubMed  CAS  Google Scholar 

  16. S.-H. Luo et al., In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass. J. Biomed. Mater. Res. Part B 95B(2), 441–448 (2010)

    CAS  Google Scholar 

  17. A.M. Deliormanlı et al., In vivo evaluation of cerium, gallium and vanadium-doped borate-based bioactive glass scaffolds using rat subcutaneous implantation model. Ceram. Int. 42(10), 11574–11583 (2016)

    Google Scholar 

  18. P. Marie, D. Felsenberg, M. Brandi, How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos. Int. 22(6), 1659–1667 (2011)

    PubMed  CAS  Google Scholar 

  19. S.P. Nielsen, The biological role of strontium. Bone 35(3), 583–588 (2004)

    Google Scholar 

  20. F. Yang et al. Osteogenic differentiation of mesenchymal stem cells could be enhanced by strontium. in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. 2010. IEEE

  21. Y. Li et al., Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 418(4), 725–730 (2012)

    PubMed  CAS  Google Scholar 

  22. A. Guida et al., Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J. Mater. Sci. Lett. 22(20), 1401–1403 (2003)

    CAS  Google Scholar 

  23. M. Farag, W. Abd-Allah, H.Y. Ahmed, Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass. J. Biomed. Mater. Res. Part A 105(6), 1646–1655 (2017)

    CAS  Google Scholar 

  24. M. O’Donnell et al., Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 4(5), 1455–1464 (2008)

    PubMed  Google Scholar 

  25. Z. Yang, J. Cheng, L. Wang, Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 23(4), 475–479 (2008)

    Google Scholar 

  26. N.D. Ravi, R. Balu, T. Sampath Kumar, Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J. Am. Ceram. Soc. 95(9), 2700–2708 (2012)

    CAS  Google Scholar 

  27. A. Wren et al., Comparison of a SiO2–CaO–ZnO–SrO glass polyalkenoate cement to commercial dental materials: ion release, biocompatibility and antibacterial properties. J. Mater. Sci. 24(9), 2255–2264 (2013)

    CAS  Google Scholar 

  28. H. Pan et al., Strontium borate glass: potential biomaterial for bone regeneration. J. R. Soc. Interface 7(48), 1025–1031 (2009)

    PubMed  PubMed Central  Google Scholar 

  29. Y. Zhang et al., Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. ACS Appl. Mater. Interfaces. 7(4), 2393–2403 (2015)

    PubMed  CAS  Google Scholar 

  30. M.S. Hasan, U. Werner-Zwanziger, D. Boyd, Composition‐structure‐properties relationship of strontium borate glasses for medical applications. J. Biomed. Mater. Res. Part A 103(7), 2344–2354 (2015)

    CAS  Google Scholar 

  31. Y. Zhu et al., Evaluation of the proliferation and differentiation behaviors of mesenchymal stem cells with partially converted borate glass containing different amounts of strontium in vitro. Mol. Med. Rep. 7(4), 1129–1136 (2013)

    PubMed  CAS  Google Scholar 

  32. R.F. Brown et al., Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J. Biomed. Mater. Res. Part A 88(2), 392–400 (2009)

    Google Scholar 

  33. X. Cui et al., Enhanced osteointegration of poly (methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. J. R. Soc. Interface 14(131), 20161057 (2017)

    PubMed  PubMed Central  Google Scholar 

  34. N.J. Thyparambil et al., Adult stem cell response to doped bioactive borate glass. J. Mater. Sci. 31(2), 13 (2020)

    CAS  Google Scholar 

  35. K. Zhang et al., A comparison of lithium-substituted phosphate and borate bioactive glasses for mineralised tissue repair. Dent. Mater. 35(6), 919–927 (2019)

    PubMed  PubMed Central  CAS  Google Scholar 

  36. K. O’Connell et al., Host responses to a strontium releasing high boron glass using a rabbit bilateral femoral defect model. J. Biomed. Mater. Res. Part B 105(7), 1818–1827 (2017)

    Google Scholar 

  37. K. MacDonald, K. O’Connell, D. Boyd, Pilot implantation study of a borate-glass filled hydrophilic bone cement. Mater. Lett. 231, 142–145 (2018)

    CAS  Google Scholar 

  38. X. Cui et al., Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. Mater. Sci. Eng. C 73, 585–595 (2017)

    CAS  Google Scholar 

  39. J. Zhou et al., In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing. Mater. Sci. Eng. C 60, 437–445 (2016)

    CAS  Google Scholar 

  40. S. Shetty et al., Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocrinol. Metab. 20(6), 846 (2016)

    PubMed  PubMed Central  Google Scholar 

  41. T.-R. Kuo, C.-H. Chen, Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomarker Res. 5, 18–18 (2017)

    Google Scholar 

  42. H. Hao et al., A histological evaluation on self-setting α-tricalcium phosphate applied in the rat bone cavity. Biomaterials 25(3), 431–442 (2004)

    PubMed  CAS  Google Scholar 

  43. J. Gil-Albarova et al., The in vivo performance of a sol–gel glass and a glass-ceramic in the treatment of limited bone defects. Biomaterials 25(19), 4639–4645 (2004)

    PubMed  CAS  Google Scholar 

  44. E. Kamitsos, M. Karakassides, G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure. J. Phys. Chem. 91(5), 1073–1079 (1987)

    CAS  Google Scholar 

  45. A. Kumar, S. Rai, D. Rai, Effect of thermal neutron irradiation on Gd3 + ions doped in oxyfluoroborate glass: an infra-red study. Mater. Res. Bull. 38(2), 333–339 (2003)

    CAS  Google Scholar 

  46. Y. Yiannopoulos, G.D. Chryssikos, E. Kamitsos, Structure and properties of alkaline earth borate glasses. Phys. Chem. Glasses 42(3), 164–172 (2001)

    CAS  Google Scholar 

  47. S.M. Abo-Naf, F.H. El, Batal, M.A. Azooz, Characterization of some glasses in the system SiO2, Na2O· RO by infrared spectroscopy. Mater. Chem. Phys. 77(3), 846–852 (2003)

    CAS  Google Scholar 

  48. A.M. Abdelghany et al., Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives. Spectrochim. Acta Part A 152, 126–133 (2016)

    CAS  Google Scholar 

  49. Q. Fu et al., Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. Part A 95(1), 164–171 (2010)

    Google Scholar 

  50. C.Y. Kim, A.E. Clark, L.L. Hench, Early stages of calcium-phosphate layer formation in bioglasses. J. Non-Cryst. Solids 113(2–3), 195–202 (1989)

    CAS  Google Scholar 

  51. A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J. Mol. Struct. 744–747, 657–661 (2005)

    Google Scholar 

  52. H.-J. Prins et al., In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem cell research 12(2), 428–440 (2014)

    PubMed  CAS  Google Scholar 

  53. M.N. Rahaman et al., Bioactive glass in tissue engineering. Acta Biomater. 7(6), 2355–2373 (2011)

    PubMed  PubMed Central  CAS  Google Scholar 

  54. A.A. Gorustovich et al., Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed. Mater. 1(3), 100 (2006)

    PubMed  CAS  Google Scholar 

  55. M. Bent-al-hoda Movahedi Najafabadi, H. Abnosi, Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells. Cell J. (Yakhteh) 18(1), 62 (2016)

    Google Scholar 

  56. C.M. Gundberg, Biochemical markers of bone formation. Clin. Lab. Med. 20(3), 489–502 (2000)

    PubMed  CAS  Google Scholar 

  57. M.M. Dvorak et al., Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. 101(14), 5140–5145 (2004)

    PubMed  CAS  Google Scholar 

  58. M.N. Lee et al., Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp. Mol. Med. 50(11), 142–142 (2018)

    Google Scholar 

  59. H. Zhou et al., The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro. J. Mater. Sci. 21(7), 2175–2185 (2010)

    CAS  Google Scholar 

  60. A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11), 2757–2774 (2011)

    PubMed  CAS  Google Scholar 

  61. M.V. Pahl, B.D. Culver, N.D. Vaziri, Boron and the kidney. J. Renal Nutr. 15(4), 362–370 (2005)

    Google Scholar 

  62. J. Isaac et al., Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cell Mater. 21, 130–143 (2011)

    PubMed  CAS  Google Scholar 

  63. G.A. Fielding et al., Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 8(8), 3144–3152 (2012)

    PubMed  PubMed Central  CAS  Google Scholar 

  64. J.M. Fernández et al., Strontium ranelate stimulates the activity of bone-specific alkaline phosphatase: interaction with Zn 2 + and Mg 2+. Biometals 27(3), 601–607 (2014)

    PubMed  Google Scholar 

  65. H.B. Pan et al., Strontium borate glass: potential biomaterial for bone regeneration. J. R. Soc. Interface 7(48), 1025–1031 (2010)

    PubMed  CAS  Google Scholar 

  66. Y. Li et al., Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions. J. Biomater. Appl. 31(5), 674–683 (2016)

    PubMed  CAS  Google Scholar 

  67. C. Wu et al., Bioactive SrO–SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 7(4), 1797–1806 (2011)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Centre and Faculty of Science, Al-Azhar University (Girls), Egypt for a possibility to use their facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zainab M. Al-Rashidy or Mohammad M. Farag.

Ethics declarations

Conflict of Interest

The authors declare that there have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rashidy, Z.M., Omar, A.E., El-Aziz, T.H.A. et al. In vivo bioactivity assessment of strontium-containing soda-lime-borate glass implanted in femoral defect of rat. J Inorg Organomet Polym 30, 3953–3964 (2020). https://doi.org/10.1007/s10904-020-01535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01535-4

Keywords

Navigation