Skip to main content
Log in

Preparation and Microstructure Control of PMDA/ODA Polyimide Hollow Fibers

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Poly(4,4'-oxydiphenylene pyromellitimide) (PMDA/ODA) hollow fiber membranes with regular morphologies have been successfully prepared through a two-step dry-jet wet spinning method. The morphologies of polyimide (PI) hollow fibers were regulated via adjusting the major spinning parameters, including dope/bore flow rate ratio, bore fluid composition, coagulation bath temperature and air gap distance. SEM results show that the morphologies of PI hollow fibers strongly depended on the spinning conditions, and fibers with regular asymmetric structures were finally obtained. The fiber wall thickened with the increase of dope/bore flow rate ratio, and the fibers could well self-support when the dope/bore flow rate ratio ranged from 3:1 to 4:1. While higher DMAc content in the bore fluid was conducive to the formation of finger-like voids, reduced amount of DMAc would result in smaller finger-like voids and thereby lower overall porosities as well as better mechanical properties. Moreover, the finger-like voids and surface defects could be effectively prevented by lowering the coagulation bath temperature or extending the air gap distance. Gas separation and mechanical properties of the hollow fibers were found closely related to these morphological changes. On such basis, regular PI hollow fibers with different microstructures and Young’s modulus up to 1040 MPa were successfully fabricated. The prepared polyimide hollow fibers are promising candidates for fine separation under high temperature and high pressure or can be employed as the support of composite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Peng, N. Widjojo, P. Sukitpaneenit, M. M. Teoh, G. G. Lipscomb, T. S. Chung, and J. Y. Lai, Pro. Polym. Sci., 37, 1401 (2012).

    Article  CAS  Google Scholar 

  2. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res., 48, 4638 (2009).

    Article  CAS  Google Scholar 

  3. R. Baker, Membr. Technol., 138, 5 (2002).

    Google Scholar 

  4. W. F. Yong, F. Y. Li, Y. C. Xiao, T. S. Chung, and Y. W. Tong, J. Membr. Sci., 443, 156 (2013).

    Article  CAS  Google Scholar 

  5. L. Xu, C. Zhang, M. Rungta, W. Qiu, J. Liu, and W. J. Koros, J. Membr. Sci., 459, 223 (2014).

    Article  CAS  Google Scholar 

  6. T. S. Chung, S. K. Teoh, and X. D. Hu, J. Membr. Sci., 133, 161 (1997).

    Article  CAS  Google Scholar 

  7. G. Bakeri, A. F. Ismail, M. Rahimnejad, T. Matsuura, and D. Rana, Sep. Purif. Technol., 99, 262 (2012).

    Article  Google Scholar 

  8. P. Li, H. Z. Chen, and T. S. Chung, J. Membr. Sci., 434, 18 (2013).

    Article  CAS  Google Scholar 

  9. M. Khayet, Chem. Eng. Sci., 58, 3091 (2003).

    Article  CAS  Google Scholar 

  10. S. P. Sun, K. Y. Wang, D. Rajarathnam, T. A. Hatton, and T. S. Chung, AIChE Journal, 56, 1481 (2010).

    Article  CAS  Google Scholar 

  11. F. Falbo, F. Tasselli, A. Brunetti, E. Drioli, and G. Barbieri, Braz. J. Chem. Eng., 31, 1023 (2014).

    Article  Google Scholar 

  12. X. Jie, Y. Cao, J. Qin, J. Liu, and Q. Yuan, J. Membr. Sci., 246, 157 (2005).

    Article  CAS  Google Scholar 

  13. H. Z. Chen, Z. Thong, P. Li, and T. S. Chung, Int. J. Hydrogen. Energ., 39, 5043 (2014).

    Article  CAS  Google Scholar 

  14. Y. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, and D. R. Paul, Pro. Polym. Sci., 34, 561 (2009).

    Article  CAS  Google Scholar 

  15. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, and C. S. Ha, Pro. Polym. Sci., 37, 907 (2012).

    Article  CAS  Google Scholar 

  16. T. S. Chung and E. R. Kafchinski, J. Appl. Polym. Sci., 65, 1555 (1996).

    Article  Google Scholar 

  17. G. C. Kapantaidakis, G. H. Koops, and M. Wessling, Desalination, 144, 121 (2002).

    Article  CAS  Google Scholar 

  18. N. Widjojo and T. S. Chung, Ind. Eng. Chem. Res., 45, 7618 (2006).

    Article  CAS  Google Scholar 

  19. N. Peng and T. S. Chung, J. Membr. Sci., 310, 455 (2008).

    Article  CAS  Google Scholar 

  20. A. Ghosh, S. K. Sen, S. Banerjee, and B. Voit, RSC Adv., 2, 5900 (2012).

    Article  CAS  Google Scholar 

  21. M. Zhang, H. Niu, and D. Wu, Macromol. Rapid. Commun., e1800141 (2018).

    Google Scholar 

  22. T. Kaneda, T. Katsura, K. Nakagawa, and H. Makino, J. Appl. Polym. Sci., 32, 3151 (2010).

    Article  Google Scholar 

  23. J. Peterse, M. Matsuda, and K. Haraya, J. Membr. Sci., 131, 85 (1997).

    Article  Google Scholar 

  24. C. Ba and J. Economy, J. Membr. Sci., 363, 140 (2010).

    Article  CAS  Google Scholar 

  25. M. Kim, G. Kim, J. Kim, D. Lee, S. Lee, J. Kwon, and H. Han, Micropor. Mesopor. Mat., 242, 166 (2017).

    Article  CAS  Google Scholar 

  26. S. Kim, S. H. Han, and Y. M. Lee, J. Membr. Sci., 403-404, 169 (2012).

    Article  CAS  Google Scholar 

  27. Y. Li, B. Cao, and P. Li, J. Membr. Sci., 544, 1 (2017).

    Article  CAS  Google Scholar 

  28. Y. Li, B. Cao, and P. Li, Appl. Surf. Sci., 473, 1038 (2019).

    Article  CAS  Google Scholar 

  29. G. Bakeri, A. F. Ismail, M. Rahimnejad, T. Matsuura, and D. Rana, Sep. Purif. Technol., 98, 262 (2012).

    Article  CAS  Google Scholar 

  30. M. R. Kosuri and W. J. Koros, J. Membr. Sci., 320, 65 (2008).

    Article  CAS  Google Scholar 

  31. D. Wang, K. Li, and W. K. Teo, J. Membr. Sci., 115, 85 (1996).

    Article  CAS  Google Scholar 

  32. W. S. Zheng and Y. J. Lan, Chem. Eng. Sci., 101, 130 (2013).

    Article  Google Scholar 

  33. G. J. Dahe, R. S. Teotia, and J. R. Bellare, J. Appl. Polym. Sci., 124, 134 (2011).

    Article  Google Scholar 

  34. X. Liu, B. Cao, and P. Li, Ind. Eng. Chem. Res., 57, 329 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly thank the financial support from National Key Research and Development Program of China (Project No.2017YFB0307600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongqing Niu or Dezhen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Li, J., Lei, H. et al. Preparation and Microstructure Control of PMDA/ODA Polyimide Hollow Fibers. Fibers Polym 21, 944–953 (2020). https://doi.org/10.1007/s12221-020-9381-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9381-2

Keywords

Navigation