Skip to main content
Log in

Fabrication of Novel Ag Flake Composite Films Using a CMC/PEI Cross-Linking Process

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The multifunctional properties of cross-liked carboxymethlycellulose (CMC) and polyethyleneimine (PEI) films with varied CMC:PEI ratios and Ag flake sizes were studied. Both the CMC and PEI were cross-linked through a sonication process to achieve dispersive equilibrium. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the functional groups in the sample material, with thermogravimetric analysis and differential scanning calorimetry used to investigate the overall thermal behavior of the CMC–PEI cross-linked films. Thermal diffusivity and thermal conductivity were also analyzed using laser flash analysis. To analyze the effects of Ag flakes as a filler material, the distribution of the Ag flakes within the film was determined using scanning electron microscopy. The thermal conductivity and resistance of the CMC films increased when cross-linked with 20% PEI. The electrical and thermal properties of the films also improved with the addition of Ag flakes.

Graphic Abstract

The multifunctional properties of cross-liked carboxymethlycellulose and polyethyleneimine films with varied CMC:PEI ratios and Ag flake sizes were studied. The thermal, electrical and mechanical properties of solder joints were investigated by using various kinds of tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, X., Tang, Y., Song, J., Yang, W., Wang, M., Zhu, C., Zhao, W., Zheng, J., Lin, Y.: Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129, 236–244 (2018)

    Article  CAS  Google Scholar 

  2. Luo, Q., Ma, H., Hou, Q., Li, Y., Ren, J., Dai, X., Yao, Z., Zhou, Y., Xiang, L., Du, H., He, H., Wang, N., Jiang, K., Lin, H., Zhang, H., Guo, Z.: All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28, 1706777 (2018)

    Article  Google Scholar 

  3. Yi, S., Choi, I., Kim, B., et al. Reliability issues and solutions in flexible electronics under mechanical fatigue. Electron. Mater. Lett. 14, 387–404 (2018)

    Article  CAS  Google Scholar 

  4. Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., Shan, C., Guo, J., Liu, C., Shen, C., Wang, X., Wang, N., Wang, Z., Wei, R., Guo, Z.: Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6, 12121–12141 (2018)

    Article  CAS  Google Scholar 

  5. Wang, T., Zhang, Y., Liu, Q., Cheng, W., Wang, X., Pan, L., Xu, B., Xu, H.: Adv. Funct. Mater. 28, 1705551 (2018)

    Article  Google Scholar 

  6. Cinti, S., Colozza, N., Cacciotti, I., Moscone, D., Polomoshnov, M., Sowade, E., Baumann, R.R., Arduini, F.: Electroanalysis moves towards paper-based printed electronics:carbon black nanomodified inkjet-printed sensor for ascorbic aciddetection as a case study. Sens. Actuat. B Chem. 265, 155–160 (2018)

    Article  CAS  Google Scholar 

  7. Ning, W., Wang, Z., Liu, P., Zhou, D., Yang, S., Wang, J., Li, Q., Fan, S., Jiang, K.: Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 139, 1136–1143 (2018)

    Article  CAS  Google Scholar 

  8. Wang, X., Wu, P.: Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 10, 34311–34321 (2018)

    Article  CAS  Google Scholar 

  9. Shen, Z., Feng, J.: Highly thermally conductive composite films based on nano fibrillated cellulose in situ coated with a small amount of silver nanoparticles. ACS Appl. Mater. Interfaces 10, 24193–24200 (2018)

    Article  CAS  Google Scholar 

  10. Liu, J., Jiang, T., Duan, F., Shen, G., He, X., Yang, W., Liang, P., Yue, Y., Lan, Q., Wu, J., Zeng, Q.: Electrophoresis deposition of flexible and transparent silver nanowire/graphene composite film and its electrochemical properties. J. Alloys Compd. 745, 370–377 (2018)

    Article  CAS  Google Scholar 

  11. Dai, S., Zhou, X., Wang, S., Ding, J., Yuan, N.: A self-healing conductive and stretchable aligned carbon nanotube/hydrogel composite with a sandwich structure. Nanoscale 10, 19360–19366 (2018)

    Article  CAS  Google Scholar 

  12. Xu, Y., Yang, Y., Yan, D.X., Duan, H., Zhao, G., Liu, Y.: Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chem. Eng. J. 360, 1427–1436 (2019)

    Article  CAS  Google Scholar 

  13. Hwang, S., Reyes, E.I., Moon, K.S., Rumf, R.C., Kim, N.S.: Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44, 771–777 (2015)

    Article  CAS  Google Scholar 

  14. Naim, N.M., Abdullah, H., Hamid, A.A.: Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection. Electron. Mater. Lett. 15, 70–79 (2019)

    Article  CAS  Google Scholar 

  15. Chen, Y., Pötschke, P., Pionteck, J., Voit, B., Qi, H.: Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J. Mater. Chem. A 6, 7777–7785 (2018)

    Article  CAS  Google Scholar 

  16. Chen, Y., Hou, X., Kang, R., Liang, Y., Guo, L., Dai, W., Nishimura, K., Lin, C.T., Jiang, N., Yu, J.: Highly flexible biodegradable cellulose nanofiber/graphene heat-spreader films with improved mechanical properties and enhanced thermal conductivity. J. Mater. Chem. C 6, 12739–12745 (2018)

    Article  CAS  Google Scholar 

  17. Zheng, T., Yu, X., Pilla, S.: Mechanical and moisture sensitivity of fully bio-based dialdehydecarboxymethyl cellulose cross-linked soy protein isolate films. Carbohydr. Polym. 157, 1333–1340 (2017)

    Article  CAS  Google Scholar 

  18. Tan, H., Wu, B., Li, C., Mu, C., Li, H., Lin, W.: Collagen cryogel cross-linked by naturally derived dialdehydecarboxymethyl cellulose. Carbohydr. Polym. 129, 17–24 (2015)

    Article  CAS  Google Scholar 

  19. Yu, M., Li, J., Wang, L.: KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 310, 300–306 (2017)

    Article  CAS  Google Scholar 

  20. Sirviö, J.A., Honkaniemi, S., Visanko, M., Liimatainen, H.: Composite films of poly(vinyl alcohol) and bifunctional cross-linking cellulose nanocrystals. ACS Appl. Mater. Interfaces 7, 19691–19699 (2015)

    Article  Google Scholar 

  21. Bano, S., Negi, Y.S., Illathvalappil, R., Kurungot, S., Ramya, K.: Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochim. Acta 293, 260–272 (2019)

    Article  CAS  Google Scholar 

  22. Shao, L., Li, J., Guang, Y., Zhang, Y., Zhang, H., Che, X., Wang, Y.: PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Mater. Des. 99, 235–242 (2016)

    Article  CAS  Google Scholar 

  23. Yang, J., Xie, H., Chen, H., Shi, Z., Wu, T., Yang, Q., Xiong, C.: Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J. Mater. Chem. A 6, 1403–1411 (2018)

    Article  CAS  Google Scholar 

  24. Zhai, L., Li, G., Xu, Y., Xiao, M., Wang, S., Meng, Y.: Poly(propylene carbonate)/aluminum flake composite films with enhanced gas barrier properties. J. Appl. Polym. Sci. 132, 41663 (2015)

    Google Scholar 

  25. Panwar, V., Gill, F.S., Rathi, V., Tewari, V.K., Mehra, R.M., Park, J.O., Park, S.: Fabrication of conducting composite sheets using cost-effective graphite flakes and amorphous styrene acrylonitrile for enhanced thermistor, dielectric, and electromagnetic interference shielding properties. Mater. Chem. Phys. 193, 329–338 (2017)

    Article  CAS  Google Scholar 

  26. Suh, D., Moon, C.M., Kim, D., Baik, S.: Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv. Mater. 28, 7220–7227 (2016)

    Article  CAS  Google Scholar 

  27. Jia, Y., He, H., Geng, Y., Huang, B., Peng, X.: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017)

    Article  CAS  Google Scholar 

  28. Luo, J., Cheng, Z., Li, C., Wang, L., Yu, C., Zhao, Y., Chen, M., Li, Q., Yao, Y.: Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Compos. Sci. Technol. 129, 191–197 (2016)

    Article  CAS  Google Scholar 

  29. Park, J.Y., Lee, W.J., Kwon, B.S., Nam, S.Y., Choa, S.H.: Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectron. Eng. 199, 16–23 (2018)

    Article  CAS  Google Scholar 

  30. Pan, C., Ohm, Y., Wang, J., Ford, M.J., Kumar, K., Kumar, S., Majidi, C.: Silver-coated poly(dimethylsiloxane) beads for soft, stretchable, and thermally stable conductive elastomer composites. ACS Appl. Mater. Interfaces 11, 42561–42570 (2019)

    Article  CAS  Google Scholar 

  31. Liu, W., Lin, D., Sun, J., Zhou, G., Cui, Y.: Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016)

    Article  CAS  Google Scholar 

  32. Siqueira, E.J., Salon, M.C.B., Belgacem, M.N., Mauret, E.: Carboxymethylcellulose (CMC) as a model compound of cellulose fibers and polyamideamine epichlorohydrin (PAE)–CMC interactions as a model of PAE–fibers interactions of PAE-based wet strength papers. J. Appl. Polym. Sci. 132, 42144 (2015)

    Article  Google Scholar 

  33. Sônego, M., Abibe, A.B., dos Santos, J.F., Canto, L.B., Filho, S.T.A.: Chemical changes in polyetherimide (PEI) joined by friction-based injection clinching joining (F-ICJ) technique. AIP Conf. Proc. 1779, 070007 (2016)

    Article  Google Scholar 

  34. Gabriel, C.M., Keener, M., Gallou, F., Lipshutz, B.H.: Amide and peptide bond formation in water at room temperature. Org. Lett. 17, 3968–3971 (2015)

    Article  CAS  Google Scholar 

  35. Hu, L., Xu, S., Zhao, Z., Yang, Y., Peng, Z., Yang, M., Wang, C., Zhao, J.: Ynamides as racemization-free coupling reagents for amide and peptide synthesis. J. Am. Chem. Soc. 138, 13135–13138 (2016)

    Article  CAS  Google Scholar 

  36. Wang, L., Gandorfer, M., Selvam, T., Schwieger, W.: Determination of faujasite-type zeolite thermal conductivity from measurements on porous composites by laser flash method. Mater. Lett. 221, 322–325 (2018)

    Article  CAS  Google Scholar 

  37. Ajmal, C.M., Menamparambath, M.M., Choi, H.R., Baik, S.: Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle–nanowires. Nanotechnology 27, 225603 (2016)

    Article  Google Scholar 

  38. Jo, Y., Kim, J.Y., Kim, S.Y., Seo, Y.H., Jang, K.S., Lee, S.Y., Jung, S., Ryu, B.H., Kim, H.S., Park, J.U., Choi, Y., Jeong, S.: 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers. Nanoscale 9, 5072–5084 (2017)

    Article  CAS  Google Scholar 

  39. Park, J., Kang, H.J., Shin, K.H., Kang, H.: Fast sintering of silver nanoparticle and flake layers by infrared module assistance in large area roll-to-roll gravure printing system. Sci. Rep. 6, 34470 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A03033215). This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174030201800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Boo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CJ., Hwang, BU., Jeong, H. et al. Fabrication of Novel Ag Flake Composite Films Using a CMC/PEI Cross-Linking Process. Electron. Mater. Lett. 16, 332–339 (2020). https://doi.org/10.1007/s13391-020-00218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00218-z

Keywords

Navigation