Skip to main content

Advertisement

Log in

Evaluation of hepatic CYP2D1 activity and hepatic clearance in type I and type II diabetic rat models, before and after treatment with insulin and metformin

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Introduction

Conversion in the metabolism of drugs occurs in diabetes mellitus. Considering the importance of metabolic enzymes’ activities on the efficacy and safety of medicines, the changes in liver enzymatic activity of CYP2D1 and its related hepatic clearance, by using Dextromethorphan as probe in the animal model of type I and type II diabetes, before and after treatment, was assessed in this study.

Methods

Male Wistar rats were randomly divided into 6 groups. Seven days after induction of diabetes type I and type II, treatment groups were received insulin and metformin daily for 14 days, respectively. In day 21, rats were subjected to liver perfusion by Krebs-Henseleit buffer containing Dextromethorphan as CYP2D1 probe. Perfusate samples were analyzed by HPLC fluorescence method in order to evaluate any changes in CYP2D1 activity.

Results

The average metabolic ratio of dextromethorphan and hepatic clearance were changed from 0.012 ± 0.004 and 6.3 ± 0.1 in the control group to 0.006 ± 0.0008 and 5.2 ± 0.2 in the untreated type I diabetic group, and 0.008 ± 0.003 and 5.0 ± 0.6 in the untreated type II diabetic rats. Finally, the mean metabolic ratio and hepatic clearance were changed to 0.008 ± 0.001 and 5.4 ± 0.1, and 0.013 ± 0.003 and 6.1 ± 0.4 in the treated groups with insulin and metformin, respectively.

Conclusion

In type I diabetic rats, corresponding treatment could slightly improve enzyme activity, whereas the hepatic clearance and enzyme activity reached to the normal level in type II group.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J, Abi KC. Macrovascular complications in patients with diabetes and Prediabetes. Biomed Res Int. 2017;2017:7839101–9. https://doi.org/10.1155/2017/7839101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Migdalis I, Czupryniak L, Lalic N, Leslie RD, Papanas N, Valensi P. Diabetic microvascular complications. Int J Endocrinol. 2018;2018:5683287–2. https://doi.org/10.1155/2018/5683287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bassil MS, Gougeon R. Muscle protein anabolism in type 2 diabetes. Curr Opin Clin Nutr Metab Care. 2013;16(1):83–8. https://doi.org/10.1097/MCO.0b013e32835a88ee.

    Article  CAS  PubMed  Google Scholar 

  4. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572–87. https://doi.org/10.1038/nrendo.2017.80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun X, Haas ME, Miao J, Mehta A, Graham MJ, Crooke RM, et al. Insulin dissociates the effects of liver X receptor on Lipogenesis, endoplasmic reticulum stress, and inflammation. J Biol Chem. 2016;291(3):1115–22. https://doi.org/10.1074/jbc.M115.668269.

  6. Peron EP, Ogbonna KC, Donohoe KL. Antidiabetic medications and polypharmacy. Clin Geriatr Med. 2015;31(1):17–27, vii. https://doi.org/10.1016/j.cger.2014.08.017.

    Article  PubMed  Google Scholar 

  7. Tang W, Lu AY. Metabolic bioactivation and drug-related adverse effects: current status and future directions from a pharmaceutical research perspective. Drug Metab Rev. 2010;42(2):225–49. https://doi.org/10.3109/03602530903401658.

    Article  CAS  PubMed  Google Scholar 

  8. Kotzamanis K, Angulo A, Ghazal P. Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection. Med Microbiol Immunol. 2015;204(3):395–407. https://doi.org/10.1007/s00430-015-0402-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin Shanghai. 2013;45(1):18–26. https://doi.org/10.1093/abbs/gms104.

    Article  CAS  PubMed  Google Scholar 

  10. Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK. Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediat Inflamm. 2006;2006(1):59206–6. https://doi.org/10.1155/MI/2006/59206.

  11. Feng S, Yu H, Yu Y, Geng Y, Li D, Yang C, et al. Levels of inflammatory cytokines IL-1beta, IL-6, IL-8, IL-17A, and TNF-alpha in aqueous humour of patients with diabetic retinopathy. J Diabetes Res. 2018;2018:8546423–6. https://doi.org/10.1155/2018/8546423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1612):20120431. https://doi.org/10.1098/rstb.2012.0431.

    Article  CAS  Google Scholar 

  13. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  14. Neyshaburinezhad N, Rouini M, Entezari H, Lavasani H, Hosseinzadeh Ardakani Y. Evaluation of changes in cytochrome P450 2C19 activity in type 2 diabetic rats before and after treatment, by using isolated perfused liver model. Iran J Basic Med Sci. 2020;23:629–35. doi:https://doi.org/10.22038/ijbms.2020.40836.9642.

  15. Stingl JC, Brockmoller J, Viviani R. Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry. 2013;18(3):273–87. https://doi.org/10.1038/mp.2012.42.

    Article  CAS  PubMed  Google Scholar 

  16. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94. https://doi.org/10.1517/17425255.2.6.875.

    Article  CAS  PubMed  Google Scholar 

  17. Tyndale RF, Li Y, Li NY, Messina E, Miksys S, Sellers EM. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos. 1999;27(8):924–30.

    CAS  PubMed  Google Scholar 

  18. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014;101(4):408–20. https://doi.org/10.1556/APhysiol.101.2014.4.2.

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181–8. https://doi.org/10.2147/DMSO.S82272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jamshidfar S, Ardakani YH, Lavasani H, Rouini M. Inhibition of mirtazapine metabolism by ecstasy (MDMA) in isolated perfused rat liver model. Daru. 2017;25(1):16. https://doi.org/10.1186/s40199-017-0183-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magalhaes P, De Andres F, Falcao A, A LL, Alves G. Can the CEIBA Cocktail Designed for Human Cytochrome P450 Enzymes be Used in the Rat for Drug Interaction Studies? J Pharm Pharm Sci. 2016;19(4):520–9. doi:https://doi.org/10.18433/J3D313.

  22. Wojtczak A, Rychlik-Sych M, Krochmalska-Ulacha E, Skretkowicz J. CYP2D6 phenotyping with dextromethorphan. Pharmacol Rep. 2007;59(6):734–8.

    CAS  PubMed  Google Scholar 

  23. Gaedigk A, Dinh JC, Jeong H, Prasad B, Leeder JS. Ten Years' Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. J Pers Med. 2018;8(2). doi:https://doi.org/10.3390/jpm8020015.

  24. Clark M, Kroger CJ, Tisch RM. Type 1 diabetes: a chronic anti-self-inflammatory response. Front Immunol. 2017;8:1898. https://doi.org/10.3389/fimmu.2017.01898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. https://doi.org/10.1038/nri2925.

    Article  CAS  PubMed  Google Scholar 

  26. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435–44. https://doi.org/10.1007/s11892-013-0375-y.

    Article  CAS  PubMed  Google Scholar 

  27. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S et al. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol. 2019;14(1):50–9. doi:https://doi.org/10.15420/ecr.2018.33.1.

  28. Kebis A, Kukan M, Grancic P, Jakubovsky J. A novel way of liver preservation improves rat liver viability upon reperfusion. J Zhejiang Univ Sci B. 2007;8(5):289–95. https://doi.org/10.1631/jzus.2007.B0289.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin SY, Chen CH, Ho HO, Chen HH, Sheu MT. Simultaneous analysis of dextromethorphan and its three metabolites in human plasma using an improved HPLC method with fluorometric detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;859(1):141–6. https://doi.org/10.1016/j.jchromb.2007.09.017.

    Article  CAS  PubMed  Google Scholar 

  30. Mehvar R. Application of organ clearance to estimation of the in vivo hepatic extraction ratio. Curr Clin Pharmacol. 2016;11(1):47–52.

    Article  CAS  Google Scholar 

  31. Schmith VD, Foss JF. Effects of inflammation on pharmacokinetics/pharmacodynamics: increasing recognition of its contribution to variability in response. Clin Pharmacol Ther. 2008;83(6):809–11. https://doi.org/10.1038/clpt.2008.62.

    Article  CAS  PubMed  Google Scholar 

  32. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20. https://doi.org/10.1016/j.cld.2016.08.001.

    Article  PubMed  Google Scholar 

  33. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther. 2006;318(3):1220–9. https://doi.org/10.1124/jpet.106.106013.

    Article  CAS  PubMed  Google Scholar 

  34. Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab. 2012;13(9):1327–44.

    Article  CAS  Google Scholar 

  35. Shah RR, Smith RL. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 2015;43(3):400–10. https://doi.org/10.1124/dmd.114.061093.

    Article  CAS  PubMed  Google Scholar 

  36. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8. https://doi.org/10.1038/clpt.2008.302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Negro F, Forton D, Craxi A, Sulkowski MS, Feld JJ, Manns MP. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology. 2015;149(6):1345–60. https://doi.org/10.1053/j.gastro.2015.08.035.

    Article  PubMed  Google Scholar 

  38. Sakuma T, Honma R, Maguchi S, Tamaki H, Nemoto N. Different expression of hepatic and renal cytochrome P450s between the streptozotocin-induced diabetic mouse and rat. Xenobiotica. 2001;31(4):223–37. https://doi.org/10.1080/00498250110046451.

    Article  CAS  PubMed  Google Scholar 

  39. Gravel S, Chiasson JL, Turgeon J, Grangeon A, Michaud V. Modulation of CYP450 activities in patients with type 2 diabetes. Clin Pharmacol Ther. 2019;106:1280–9. https://doi.org/10.1002/cpt.1496.

    Article  CAS  PubMed  Google Scholar 

  40. Abdel-Razzak Z, Loyer P, Fautrel A, Gautier JC, Corcos L, Turlin B, et al. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol. 1993;44(4):707–15.

    CAS  PubMed  Google Scholar 

  41. Vahabzadeh M, Mohammadpour A. Effect of Diabetes Mellitus on the Metabolism of Drugs and Toxins. Journal of Clinical Toxicology. 2015;5(2).

  42. Neyshaburinezhad N, Rouini M, Shirzad N, Esteghamati A, Nakhjavani M, Namazi S, et al. Evaluating the effect of type 2 diabetes mellitus on CYP450 enzymes and P-gp activities, before and after glycemic control: a protocol for a case-control pharmacokinetic study: evaluation of metabolism in diabetes mellitus. MethodsX. 2020;7:100853. https://doi.org/10.1016/j.mex.2020.100853.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was fully supported by a grant from National Institute for Medical Research Development of Iran (NIMAD) (grant no. 957596). The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalda H. Ardakani.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neyshaburinezhad, N., Seidabadi, M., Rouini, M. et al. Evaluation of hepatic CYP2D1 activity and hepatic clearance in type I and type II diabetic rat models, before and after treatment with insulin and metformin. DARU J Pharm Sci 28, 479–487 (2020). https://doi.org/10.1007/s40199-020-00350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-020-00350-z

Keywords

Navigation