Skip to main content
Log in

Increased Hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with Sulfonate Moiety for High-performance Easily Dyeable Fiber

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The demand for high thermal stability and high strength agents is growing steadily as a result of their increasing application in advanced materials. A series of sulfonated poly(m-phenyleneisophthalamide) (SPMIA) copolymers with superior thermal stability and good mechanical properties have been prepared via low temperature polycondensation method. Then the structures of SPMIA copolymers with different content quantities of 2,4-diaminobenzenesulfonic acid (2,4-DABSA) were confirmed by Fourier transform infrared (FTIR). Besides, their superior thermal properties were systematically investigated by differential scanning calorimetry (DSC), thermalgravimetreic analysis (TGA), and dynamic mechanical analysis (DMA). SPMIA fibers were obtained by wet spinning using the resultant SPMIA solutions. In addition, the obtained SPMIA fibers were proved to combine enhanced mechanical properties and unprecedented dyeability. Significantly, the SPMIA fiber with great mechanical property, thermal stability, and dyeability shows great potential in easily dyeing high-performance protective fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, C. E.; Wang, J.; Zhou, M. Y.; Zhu, B. K.; Zhu, L. P.; Gao, C. J. Poly(m-phenylene isophthalamide) (PMIA). A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes. J. Membr. Sci.2016, 518, 72–78.

    CAS  Google Scholar 

  2. Mei, Y.; Zhao, C.; Zhang, S.; Pei, L.; Hou, D. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl. Surf. Sci.2017, 394, 149–159.

    Google Scholar 

  3. Jiang, S. J.; Zhang, H. B.; Song, S. Q.; Ma, Y. W.; Li, J. H.; Lee, G. H.; Han, Q. W.; Liu, J. Highly stretchable conductive fibers from fewwalled carbon nanotubes coated on poly(m-phenylene isophthalamide) polymer core/shell structures. ACS Nano2015, 9, 10252.

    CAS  PubMed  Google Scholar 

  4. Son, T. W.; Kim, J. H.; Lee, W. S.; Park, J. H.; Kang, Y. S. Preparation and properties of partially dry-processed poly(m-phenylene isophthalamide) films. Fiber. Polym.2013, 14, 653–659.

    CAS  Google Scholar 

  5. Zhao, H. F.; Zhang, M. Y. Surface modification of poly(m-phenylene isophthalamide) fibers and its effect on the mechanical properties of aramid sheets. Adv. Mater. Res.2011, 314–316.

    Google Scholar 

  6. Yao, L.; Lee, C.; Kim, J. Electrospun meta-aramid/cellulose acetate and meta-aramid/cellulose composite nanofibers. Fiber. Polym.2011, 12, 197–206.

    CAS  Google Scholar 

  7. Layek, R. K.; Samanta, S.; Nandi, A. K. The physical properties of sulfonated graphene/poly(vinyl alcohol) composites. Carbon2012, 50, 815–827.

    CAS  Google Scholar 

  8. Kesong, H. U.; Dhaval, D.; Choi, I.; Vladimir, V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci.2014, 39, 1934–1972.

    Google Scholar 

  9. Li, Z. Q.; Guo, Q.; Li, Z. Q.; Fan, G; Xiong D. B.; Su, Y. S.; Zhang, J.; Zhang, D. ENHANCED MECHANICAL PROPERTIES OF GRAPHENE (REDUCED GRAPHENE OXIDE)/ALUMINUM COMPOSITES WITH A BIOINSPIRED NANOLAMINATED STRUCTURE. Nano Lett.2015, 15, 8077–8083.

    CAS  PubMed  Google Scholar 

  10. Xiao, C.; Tan, Y.; Yang, X.; Xu, T.; Wang, L.; Qi, Z. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes. Chem. Phys. Lett.2018, 695, 34–43.

    CAS  Google Scholar 

  11. Chao, T.; Song, Z.; Wang, X.; Jian, H. Enhanced mechanical properties and thermal stability of cellulose insulation paper achieved by doping with melamine-grafted nano-SiO2. Cellulose2018, 25, 1–15.

    Google Scholar 

  12. Rafiee, M. A. Graphene-based composite materials. 2011, 442, 282–286.

    Google Scholar 

  13. Dong, J.; Fang, Y. T.; Gan, F.; G.; An, J. Y.; Zhao, X.; Zhang, Q. H. Enhanced mechanical properties of polyimide composite fibers containing amino functionalized carbon nanotubes. Compos. Sci. Technol.2016, 135, 137–145.

    CAS  Google Scholar 

  14. Ouyang, S.; Wang, T.; Zhong, L.; Wang, S.; Wang, S. Utilization of surface differences to improve dyeing properties of poly(m-phenylene isophthalamide) membranes. Front. Mater. Sci.2018, 12, 1–10.

    Google Scholar 

  15. Du, S.; Wang, W.; Yan, Y.; Zhang, J.; Tian, M.; Zhang, L.; Wan, X. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups. Chem. Commun.2014, 50(69), 9929-9931.

    Google Scholar 

  16. Qi, X.; Wang, W.; Zhang, J.; Yan, C.; Zhu, Y.; Zhang, F. Aqueously soluble semi-aromatic copolyamides with dual-functional groups as sizing agent. J. Appl. Polym. Sci.2019, 136, 47132.

    Google Scholar 

  17. Wang, W.; Qi, X.; Guan, Y.; Zhang, F.; Zhang, J.; Yan, C.; Zhu, Y.; Wan, X. Synthesis and properties of poly(p-phenylene terephthalamide) bearing both polar and unsaturated substituents introduced via claisen rearrangement reaction. J. Polym. Sci., Part A: Polym. Chem.2016, 54, 2050–2059.

    CAS  Google Scholar 

  18. Wang, W.; Qi, X.; Zhang, F.; Zhu, Y.; Wan, X. Synthesis and characterization of novel semiaromatic copolyamides bearing both polar hydroxyl and unsaturated allyl substituents. J. Polym. Sci., Part A: Polym. Chem.2017, 55, 690–698.

    CAS  Google Scholar 

  19. Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. Highperformance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties. Polymer2013, 54, 1700–1708.

    CAS  Google Scholar 

  20. Dai, X.; Feng, B.; Long, J.; Yao, H.; Ji, X.; Qiu, X.; Men, Y. Highperformance polyimide copolymer fibers derived from 5-anino-2-(2-hydroxy-4-aminobenzene)-benzoxazole: preparation, structure and properties. Polymer2018, 150, 254–266.

    CAS  Google Scholar 

  21. Lammers, M.; Klop, E. A.; Northolt, M. G.; Sikkema, D. J. Mechanical properties and structural transitions in the new rigidrod polymer fibre PIPD (‘M5’) during the manufacturing process. Polymer1998, 39, 5999–6005.

    CAS  Google Scholar 

  22. Gan, F.; Dong, J.; Tan, W. J.; Zhang, D. B.; Zhao, X.; Chen, X. Y.; Zhang, Q. H. Fabrication and characterization of co-polyimide fibers containing pyrimidine units. J. Mater. Sci.2017, 52, 1–12.

    Google Scholar 

  23. Feng, Y.; Luo, L. B.; Huang, J. Y.; Li, K.; Li, B. Y.; Wang, H. N.; Liu, X. Y. Effect of molecular rigidity and hydrogen bond interaction on mechanical properties of polyimide fibers. J. Appl. Polym. Sci.2016, 133, 43677–43687.

    Google Scholar 

  24. Vandenberg, E. J.; Diveley, W. R.; Filar, L. J.; Patel, S. R.; Barth, H. G. The synthesis and solution properties of some rigid-chain, watersoluble polymers: poly[N,N’-(sulfo-phenylene)phthalamide]s and poly[N,N’-(sulfo-p-phenylene)pyromellitimide]. J. Polym. Sci., Part A: Polym. Chem.1989, 27, 3745–3757.

    CAS  Google Scholar 

  25. Hatke, W.; Schmidt, H. W.; Heitz, W. Substituted rod-like aromatic polyamides: synthesis and structure-property relations. J. Polym. Sci., Part A: Polym. Chem.2010, 29, 1387–1398.

    Google Scholar 

  26. Sarkar, N.; Kershner, L. D. Rigid rod water-soluble polymers. J. Appl. Polym. Sci.2015, 62, 393–408.

    Google Scholar 

  27. Mao, P.; Xiao, G.; Tang, X.; Yang, Z. Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules2014, 47, 8411–8419.

    Google Scholar 

  28. Yun, H. C.; Chu, E. Y.; Han, Y. K.; Lee, J. L.; Kwei, T. K.; Okamoto, Y. Gelation of sulfonated rigid polymers. Macromolecules1997, 30, 2185–2186.

    CAS  Google Scholar 

  29. Viale, S.; Best, A. S.; Mendes, E.; Picken, S. J. Formation of aqueous molecular nematic liquid crystal phase in poly(p-sulfophenylene sulfoterephthalamide). Chem. Commun.2005, 12, 1528–1530.

    Google Scholar 

  30. Qin, W.; Zhuo, C.; Deng, S.; Song, S.; Xiong, C.; Dong, L. Fluxible poly(p-phenyleneterephthalamide)-based polymer with tunable condensed state structure and controllable rheology behaviors. Chem. Eng. J.2017, 328, 343–352.

    Google Scholar 

  31. Viale, S.; Best, A. S.; Mendes, E.; Jager, W. F.; Picken, S. J. A supramolecular nematic phase in sulfonated polyaramides. Chem. Commun.2004, 14, 1596–1597.

    Google Scholar 

  32. Mendes, E.; Viale, S.; Santin, O.; Heinrich, M.; Picken, S. J. A smallangle neutron scattering investigation of rigid polyelectrolytes under shear. J. Appl. Crystallogr.2003, 36, 1000–1005.

    CAS  Google Scholar 

  33. Pervin, S. A.; Prabu, A. A.; Kim, K. J. Dyeing behavior of chemically modified poly(1,4-phenylene sulfide) fiber towards disperse, anionic, and cationic dyes. Fiber. Polyme.2014, 15, 1168–1174.

    CAS  Google Scholar 

  34. Xiong, L. K.; Fu, Y. F.; Zhang, S. Y.; Yin, C. Y. Investigation of stainresistant cationic dyeable nylon 6 modified with sodium salt of 5-sulfoisophthalic acid and polyethylene glycol. Fiber. Polym.2016, 17, 984–991.

    CAS  Google Scholar 

  35. Li, N.; Zhang, X. K.; Yu, J. R.; Wang, Y.; Zhu, J.; Hu, Z. M. Synthesis and characterization of easily colored meta-aramid copolymer containing ether bonds. Chinese J. Polym. Sci.2019, 37, 227–234.

    Google Scholar 

  36. Luo, K.; Li, J.; Duan, G. Y.; Wang, Y.; W.; Yu, J. R.; Zhu, J.; Hu, Z. M. Comb-shaped aromatic polyamide cross-linked by Diels-Alder chemistry: towards recyclable and high-performance thermosets. Polymer2018, 142, 33–42.

    CAS  Google Scholar 

  37. Lin, C. K.; Kuo, J. F.; Chen, C. Y.; Fang, J. J. Investigation of bifurcated hydrogen bonds within the thermotropic liquid crystalline polyurethanes. Polymer2012, 53, 254–258.

    CAS  Google Scholar 

  38. Dong, H.; Zhong, X.; Xin, L.; Lv, Y. Effect of N-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines. Polymer2011, 52, 1092–1101.

    CAS  Google Scholar 

  39. Chen, W. C.; Kuo, S. W.; Chang, F. C. Self-assembly of an A-B diblock copolymer blended with a C homopolymer and a C-D diblock copolymer through hydrogen bonding interaction. Polymer2010, 51, 4176–4184.

    CAS  Google Scholar 

  40. Viale, S.; Jager, W. F.; Picken, S. J. Synthesis and characterization of a water-soluble rigid-rod polymer. Polymer2003, 44, 7843–7850.

    CAS  Google Scholar 

  41. Kim, Y. H.; Beckerbauer, R. Role of end groups on the glass transition of hyperbranched polyphenylene and triphenylbenzene derivatives. Macromolecules1994, 27, 1968–1971.

    CAS  Google Scholar 

  42. Van Krevelen, D. W.; te Nijenhuis, K. Chapter 1. Polymer Properties. in Properties of Polymers. Elsevier, 2009, 3–5.

    Google Scholar 

  43. Wang, C. Y.; Zhao, H. P.; Li, G.; Jiang, J. M. Novel fluorinated polyimides derived from an unsymmetrical diamine containing trifluoromethyl and methyl pendant groups. Polym. Adv. Technol.2011, 22, 1816–1823.

    CAS  Google Scholar 

  44. Lu, Y. H.; Hu, Z. Z.; Fang, Q. X.; Wang, Y. F. Light-colored and organosoluble fluorinated polyimide derived from 1,2,3,4-cyclobutanetrtracarboxylic dianhydride. Adv. Mater. Res.2011, 199–200.

    Google Scholar 

  45. Lu, Y.; Hu, Z.; Wang, Y.; Fang, Q. X. Organosoluble and lightcolored fluorinated semialicyclic polyimide derived from 1,2,3,4-cyclobutanetetracarboxylic dianhydride. J. Appl. Polym. Sci.2012, 12, 1371–1376.

    Google Scholar 

  46. Kai, W. Synthesis and characterization of novel fluorinated polyimides derived from 4,4’-[2,2,2-trifluoro-1-(3,5-ditrifluoromethylphenyl)ethylidene]diphthalic anhydride and aromatic diamines. Polymer2006, 47, 1443–1450.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DHD- 2019012). N. L. is grateful for a scholarship from China Scholarship Council to study at University of California, Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Rong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, XK., Yu, JR. et al. Increased Hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with Sulfonate Moiety for High-performance Easily Dyeable Fiber. Chin J Polym Sci 38, 1230–1238 (2020). https://doi.org/10.1007/s10118-020-2416-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2416-8

Keywords

Navigation