Skip to main content
Log in

Physiological limits to inshore invasion of Indo-Pacific lionfish (Pterois spp.): insights from the functional characteristics of their visual system and hypoxia tolerance

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Indo-Pacific lionfish (Pterois spp.) have become established throughout the Caribbean and the coastal regions of the Gulf of Mexico and western Atlantic Ocean from North Carolina to central Brazil. Lionfish may also invade estuaries, as they tolerate salinities down to 4‰. We hypothesize that the functional characteristics of their visual system (which evolved in the clear tropical waters of the Indo-Pacific) or their inability to tolerate hypoxia will limit the capacity of lionfish to occupy these areas. We assessed the former with corneal electroretinography and the latter with intermittent-flow respirometry. The luminous sensitivity, temporal resolution (quantified as flicker fusion frequency), and spectral sensitivity of the lionfish visual system are like those of native piscivores, indicating that their visual system will be functional under estuarine photic conditions and allow lionfish to be effective piscivores. In contrast, acute exposure to reduced oxygen levels (equivalent to those commonly occurring in mid-Atlantic and Gulf of Mexico estuaries) exceeded the physiological tolerances of lionfish. We therefore conclude that hypoxia will control or limit estuarine invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Google Scholar 

  • Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fish 96:1151–1157

    Google Scholar 

  • Ali MA, Muntz WR (1975) Electroretinography as a tool for studying fish vision. Vision in fishes. Plenum Press, New York, pp 159–167

    Google Scholar 

  • Barbour AB, Montgomery ML, Adamson AA, Diaz-Ferguson E, Silliman BR (2010) Mangrove use by the invasive lionfish Pterois volitans. Mar Ecol Prog Ser 401:291–294

    Google Scholar 

  • Barker BD, Horodysky AZ, Kerstetter DW (2017) Hot or not? Comparative behavioral thermoregulation, critical temperature regimes, and thermal tolerances of the invasive lionfish Pterois sp. versus native western North Atlantic reef fishes. Biol Invasions 20:45–58

    Google Scholar 

  • Baumann H (2019) Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can J Zool. https://doi.org/10.1139/cjz-2018-0198

    Article  Google Scholar 

  • Baumann H, Smith EM (2018) Quantifying metabolically driven pH and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41:1102–1117

    CAS  Google Scholar 

  • Baumann H, Wallace R, Tagliaferri T, Gobler CJ (2015) Large natural pH, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal and interannual time scales. Estuaries Coasts 38:220–231

    CAS  Google Scholar 

  • Beck MW, Heck KL Jr, Able KW, Childers DL, Eggleston DB, Gillander BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641

    Google Scholar 

  • Bernal NA, DeAngelis DL, Schofield PJ, Sealey KS (2015) Predicting spatial and temporal distribution of Indo-Pacific lionfish (Pterois volitans) in Biscayne Bay through habitat suitability modeling. Biol Invasions 17:1603–1614

    Google Scholar 

  • Bishop MJ, Powers PS, Porter HJ, Peterson CH (2006) Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development. Estuar Coast Shelf Sci 70:415–422

    Google Scholar 

  • Bowmaker JK (1990) Visual pigments of fishes. In: Douglas RH, Djamgoz MBA (eds) The visual system of fishes. Chapman & Hall, London, pp 63–81

    Google Scholar 

  • Bowmaker JK, Kunz YW (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age dependent changes. Vis Res 27:2101–2108

    CAS  PubMed  Google Scholar 

  • Breitburg DL (1992) Episodic hypoxia in Chesapeake Bay: interacting effects of recruitment, behavior, and physical disturbance. Ecol Monogr 62:525–546

    Google Scholar 

  • Breitburg DL, Adamack A, Rose KA, Kolesar SE, Decker B, Purcell JE, Keister JE, Cowan JH (2003) The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26:280–297

    CAS  Google Scholar 

  • Brill RW (1996) Selective advantages conferred by the higher performance physiology of tunas, billfishes, and dolphin fish. Comp Biochem Physiol 113A:3–15

    CAS  Google Scholar 

  • Brill R, Magel C, Davis M, Hannah R, Rankin P (2008) Effects of rapid decompression and exposure to bright light on visual function in black rockfish (Sebastes melanops) and Pacific halibut (Hippoglossus stenolepis). Fish Bull 106:427–437

    Google Scholar 

  • Browman HI (2005) Applications of sensory biology in marine ecology and aquaculture. Mar Ecol Prog Ser 287:266–269

    Google Scholar 

  • Brown KT (1968) The electroretinogram: its components and their origins. Vis Res 8:633–677

    CAS  PubMed  Google Scholar 

  • Buchheister A, Latour RJ (2015) Diets and trophic-guild structure of a diverse fish assemblage in Chesapeake Bay, U.S.A.. J Fish Biol 86:967–992

    CAS  PubMed  Google Scholar 

  • Buchheister A, Bonzek CF, Gartland J, Latour RJ (2013) Patterns and drivers of the demersal fish community of Chesapeake Bay. Mar Ecol Prog Ser 481:161–180

    Google Scholar 

  • Capossela KM, Brill RW, Fabrizio MC, Bushnell PG (2012) Metabolic and cardiorespiratory responses of summer flounder Paralicthys dentatus to hypoxia at two temperatures. J Fish Biol 81:1043–1058

    CAS  PubMed  Google Scholar 

  • Carroll MR (2018) Spectral sensitivity of the invasive lionfish (Pterois species) retina and its capacity for change in response to lighting condition. MS thesis, Florida Institute of Technology

  • Cech JJ, Rowell DW, Glasgow JS (1977) Cardiovascular responses of the winter flounder Pseudopleuronectes americanus to hypoxia. Comp Biochem Physiol 57A:123–125

    Google Scholar 

  • Cerino D, Overton AS, Rice JA, Morris JA Jr (2013) Bioenergetics and trophic impacts of the invasive Indo-Pacific lionfish. Trans Am Fish Soc 142:1522–1534

    Google Scholar 

  • Chabot D, Steffensen JF, Farrell AP (2016) The determination of standard metabolic rate in fishes. J Fish Biol 88:81–121

    CAS  PubMed  Google Scholar 

  • Claireaux G, Chabot D (2016) Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope. J Fish Biol 88:232–251

    CAS  PubMed  Google Scholar 

  • Claireaux G, Lefrançois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos Trans R Soc B 362:2031–2041

    Google Scholar 

  • Claireaux G, Webber DM, Lagardère JP, Kerr SR (2000) Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod Gadus morhua. J Sea Res 44:257–265

    Google Scholar 

  • Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782

    PubMed  Google Scholar 

  • Coates MM, Garm A, Theobald JC, Thompson SH, Nilsson D-E (2006) The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J Exp Biol 209:3758–3765

    PubMed  Google Scholar 

  • Collette BB, Klein-MacPhee G (2002) Bigelow and Schroeder’s fishes of the Gulf of Maine, 3rd edn. Smithsonian Institution Press, Washington

    Google Scholar 

  • Cooke SJ, O’Connor CM (2010) Making conservation physiology relevant to policy makers and conservation practitioners. Conserv Lett 2:159–166

    Google Scholar 

  • Cooke SJ, Suski CD (2008) Ecological restoration and physiology: an overdue integration. Bioscience 58:957–968

    Google Scholar 

  • Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol. https://doi.org/10.1093/conphys/cot001

    Article  PubMed  PubMed Central  Google Scholar 

  • Côté IM, Green SJ (2012) Potential effects of climate change on a marine invasion: the importance of current context. Curr Zool 58:1–8

    Google Scholar 

  • Côté IM, Maljković A (2010) Predation rates of Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 404:219–225

    Google Scholar 

  • Côté IM, Smith NS (2018) The lionfish Pterois sp. invasion: has the worst-case scenario come to pass? J Fish Biol 92:660–689

    PubMed  Google Scholar 

  • Côté IM, Green SJ, Hixon MA (2013) Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol Conserv 164:50–61

    Google Scholar 

  • Courrat A, Lobry J, Nicolas D, Laffargue P, Amara R, Lepage M, Girardin M, Le Pape O (2009) Anthropogenic disturbance on nursery function of estuarine areas for marine species. Estuar Coast Shelf Sci 81:179–190

    Google Scholar 

  • Courtenay WR (1995) Marine fish introductions in southeastern Florida. Am Fish Soc Introd Fish Sect Newsl 1995:2–3

    Google Scholar 

  • Coutant CC (1985) Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk. Trans Am Fish Soc 114:31–61

    Google Scholar 

  • Dabruzzi TF, Bennett WA, Fangue NA (2017) Thermal ecology of red lionfish Pterois volitans from southeast Sulawesi, Indonesia, with comparisons to other Scorpaenidae. Aquat Biol 26:1–14

    Google Scholar 

  • Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84:51–74

    PubMed  Google Scholar 

  • Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275–281

    CAS  PubMed  Google Scholar 

  • Diaz RJ, Breitburg DL (2009) The hypoxic environment. In: Richards JG, Farrell AP, Brauner CJ (eds) Fish physiology, vol 27. Academic Press, San Diego, pp 1–23

    Google Scholar 

  • Douglas R, Djamgoz M (1990) The visual system of fish. Chapman and Hall, London

    Google Scholar 

  • Eby LA, Crowder LB (2002) Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Can J Fish Aquat Sci 59:952–965

    Google Scholar 

  • Eby LA, Crowder LB, McClellan CM, Peterson CH, Powers MJ (2005) Habitat degradation from intermittent hypoxia: impacts on demersal fishes. Mar Ecol Prog Ser 291:249–261

    Google Scholar 

  • Esbaugh AJ (2018) Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 188:1–13

    CAS  PubMed  Google Scholar 

  • Farrell AP (2016) Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. J Fish Biol 88:322–343

    CAS  PubMed  Google Scholar 

  • Ferreira CEL, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA (2015) First record of invasive lionfish (Pterois volitans) for the Brazilian coast. PLoS ONE 10:e0123002

    PubMed  PubMed Central  Google Scholar 

  • Fishelson L (1997) Experiments and observations on food consumption, growth, and starvation in Dendrochirus brachypterus and Pterois volitans (Pteroinae, Scorpaenidae). Environ Biol Fish 50:391–403

    Google Scholar 

  • Flamarique IN, Hárosi FI (2000) Photoreceptors, visual pigments, and ellipsosomes in the killifish, Fundulus heteroclitus: a microspectrophotometric and histological study. Vis Neurosci 17:403–420

    CAS  PubMed  Google Scholar 

  • Forward RB Jr, Cronin TW, Douglass JK (1988) The visual pigments of crabs II. Environmental adaptations. J Comp Physiol 162:479–490

    CAS  Google Scholar 

  • Frank TM (2003) Effects of light adaptation on the temporal resolution of deep-sea crustaceans. Integr Comp Biol 43:559–570

    PubMed  Google Scholar 

  • Fritsches KA, Brill RW, Warrant EJ (2005) Warm eyes provide superior vision in swordfishes. Curr Biol 15:55–58

    CAS  PubMed  Google Scholar 

  • Fry FEJ (1947) Effect of the environment on animal activity. Univ Toronto Stud Biol Ser 55:1–62

    Google Scholar 

  • Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, New York, pp 1–98

    Google Scholar 

  • Fry FEJ, Hart JS (1948) The relation of temperature to oxygen consumption in the goldfish. Biol Bull 94:66–77

    CAS  PubMed  Google Scholar 

  • Gallegos CL, Jordan TE, Hines AH, Weller DE (2005) Temporal variability of optical properties in a shallow, eutrophic estuary: seasonal and interannual variability. Estuar Coast Shelf Sci 64:156–170

    Google Scholar 

  • González J, Grijalba-Bendeck M, Acero A, Betancur R (2009) The invasive red lionfish, Pterois volitans (Linnaeus 1758), in the southwestern Caribbean Sea. Aquat Invasions 4:507–510

    Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    CAS  PubMed  Google Scholar 

  • Green SS, Akins LJ, Côté IM (2011) Foraging behavior and prey consumption in the Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 433:159–167

    Google Scholar 

  • Green SJ, Akins JL, Maljković A, Côté IM (2012) Invasive lionfish drive Atlantic coral reef fish declines. PLoS ONE 7:e32596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green SJ, Dilley ER, Benkwitt CE, Davis ACD, Ingeman KE, Kindinger TL, Tuttle LJ, Hixon MA (2019) Trait-mediated foraging drives patterns of selective predation by native and invasive coral-reef fishes. Ecosphere 10:e02752. https://doi.org/10.1002/ecs2.2752

    Article  Google Scholar 

  • Guthrie DM, Muntz WRA (1993) Role of vision in fish behavior. In: Pitcher TJ (ed) Behavior of teleost fishes, 2nd edn. Chapman and Hall, London, pp 89–128

    Google Scholar 

  • Hixon MA, Green SJ, Albins MA, Akins JL, Morris JA Jr (2016) Lionfish: a major marine invasion. Mar Ecol Prog Ser 558:161–165

    Google Scholar 

  • Horodysky AZ, Brill RW, Warrant EJ, Musick JA, Latour RJ (2008) Comparative visual function in five sciaenid fishes inhabiting Chesapeake Bay. J Exp Biol 211:3601–3612

    PubMed  Google Scholar 

  • Horodysky AZ, Brill RW, Warrant EJ, Musick JA, Latour RJ (2010) Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay. J Exp Biol 213:1751–1761

    PubMed  Google Scholar 

  • Horodysky AZ, Brill RW, Bushnell PG, Musick JA, Latour RJ (2011) Comparative metabolic rates of common western North Atlantic Ocean sciaenid fishes. J Fish Biol 79:235–255

    CAS  PubMed  Google Scholar 

  • Horodysky AZ, Brill RW, Crawford KC, Seagroves ES, Johnson AK (2013) Comparative visual ecophysiology of mid-Atlantic temperate reef fishes. Biol Open 2:1371–1381

    PubMed  PubMed Central  Google Scholar 

  • Horodysky AZ, Cooke SJ, Brill RW (2015) Physiology in the service of fisheries science: why thinking mechanistically matters. Rev Fish Biol Fisher 25:425–447

    Google Scholar 

  • Ingeman KE (2016) Lionfish cause increased mortality rates and drive local extirpation of native prey. Mar Ecol Prog Ser 558:235–245

    Google Scholar 

  • Jud ZR, Layman CA, Lee JA, Arrington DA (2011) Recent invasion of a Florida (USA) estuarine system by lionfish Pterois volitans/P. miles. Aquat Biol 13:21–26

    Google Scholar 

  • Jud ZR, Nichols PK, Layman CA (2014) Broad salinity tolerance in the invasive lionfish Pterois spp. may facilitate estuarine colonization. Environ Biol Fish 98:135–143

    Google Scholar 

  • Kalinoski M, Hirons A, Horodysky A, Brill R (2014) Spectral sensitivity, luminous sensitivity, and temporal resolution in three sympatric temperate coastal shark species. J Comp Physiol B 200:997–1013

    Google Scholar 

  • Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JC, Fisher TR, Gilbert PM, Hagy JD, Harding LW, Houde ED, Kimmell DG, Miller WD, Newell RIE, Roman MR, Smith EM, Stevenson JC (2005) Eutrophication of the Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29

    Google Scholar 

  • Kimball ME, Miller JM, Whitfield PE, Hare JA (2004) Thermal tolerance and potential distribution of invasive lionfish (Pterois volitans/miles complex) on the east coast of the United States. Mar Ecol Prog Ser 283:269–278

    Google Scholar 

  • Ladich F, Collin SP, Moller P, Kapoor BG (2006) Communication in fishes, vol 2. Science Publisher, Enfield

    Google Scholar 

  • Lapointe D, Vogelbein WK, Fabrizio MC, Gauthier DT, Brill RW (2014) Temperature, hypoxia, and mycobacteriosis: effects on adult striped bass Marone saxatilis metabolic performance. Dis Aquat Organ 108:113–127

    CAS  PubMed  Google Scholar 

  • Lennox R, Choi K, Harrison PM, Paterson JE, Peat TP, Ward TD, Cooke SJ (2015) Improving science-based invasive species management with physiological knowledge, concepts, and tools. Biol Invasions 17:2213–2227

    Google Scholar 

  • Loew ER, McFarland WN (1990) The underwater visual environment. In: Douglas R, Djamgoz M (eds) The visual system of fish. Chapman and Hall, London, pp 1–44

    Google Scholar 

  • Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943

    Google Scholar 

  • Losey GS, Mcfarland WM, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 2003:433–454

    Google Scholar 

  • Lythgoe JN (1979) Ecology of vision. Clarendon Press, Oxford

    Google Scholar 

  • Lythgoe JN (1988) Light and vision in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 131–149

    Google Scholar 

  • Lythgoe JN, Partridge JC (1991) The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vis Res 31:361–371

    CAS  PubMed  Google Scholar 

  • Marcek BJ, Brill RW, Fabrizio MC (2019) Metabolic scope and hypoxia tolerance of Atlantic croaker (Micropogonias undulatus Linnaeus, 1766) and spot (Leiostomus xanthurus Lacepède, 1802), with insights into the effects of acute temperature change. J Exp Mar Biol Ecol 516:150–158

    Google Scholar 

  • Marras S, Cucco A, Antognarelli F, Azzurro A, Milazzo M, Bariche M, Butenschön M, Kay S, Di Bitetto M, Quattrocchi G, Sinerchia M, Domenici P (2015) Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling. Conserv Physiol. https://doi.org/10.1093/conphys/cou059

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall J, Carleton KL, Cronin T (2015) Colour vision in marine organisms. Curr Opin Neurobiol 34:86–94

    CAS  PubMed  Google Scholar 

  • Martino E, Secor D (2009) Warming and climate change. In: Striped Bass Species Team background and issue briefs. Ecosystem based fisheries management for Chesapeake Bay. Publ no. UM-SG-TS-2009-07, Maryland Sea Grant, College Park, MD

  • McComb DM, Kajiura SM, Horodysky AZ, Frank TM (2013) Comparative visual function in predatory fishes from the Indian River Lagoon. Physiol Biochem Zool 86:285–297

    PubMed  Google Scholar 

  • McCormick MI, Allan BJM (2016) Lionfish misidentification circumvents an optimized escape response by prey. Conserv Physiol 4:cow064. https://doi.org/10.1093/conphys/cow064

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarland WN, Loew ER (1983) Wave produced changes in underwater light and their relations to vision. Environ Biol Fish 8:173–184

    Google Scholar 

  • McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, De Boeck G, Domenici P, Guerreiro PM, Hamer B, Jørgensen C, Killen SS, Lefevre S, Marras S, Michaelidis B, Nilsson GE, Peck MA, Perez-Ruzafa A, Rijnsdorp AD, Shiels HA, Steffensen JF, Svendsen JC, Svendsen MBS, Teal LR, Van der Meer J, Wang T, Wilson JM, Wilson RW, Metcalfe JD (2016) Conservation physiology of marine fishes: state of the art and prospects for policy. Conserv Physiol 4:1–20

    Google Scholar 

  • Morris JA (2012) Invasive lionfish: a guide to control and management. Gulf and Caribbean Fisheries Institute special publication series number 1, Marathon, Florida

  • Morris JA, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fish 86:389. https://doi.org/10.1007/s10641-009-9538-8

    Article  Google Scholar 

  • Mosk V, Thomas N, Hart NS, Partridge JC, Beazley LD, Shand J (2007) Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus. Vis Neurosci 24:345–354

    PubMed  Google Scholar 

  • Muntz WRA (1990) Stimulus, environment and vision in fishes. In: Douglas R, Djamgoz M (eds) The visual system of fish. Chapman and Hall, London, pp 419–511

    Google Scholar 

  • Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vis Res 13:1829–1874

    CAS  PubMed  Google Scholar 

  • Norin T, Clark TD (2016) Measurement and relevance of maximum metabolic rate in fishes. J Fish Biol 88:122–151

    CAS  PubMed  Google Scholar 

  • Norin T, Malte H, Clark TD (2014) Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J Exp Biol 217:244–251

    PubMed  Google Scholar 

  • Parkyn DC, Hawryshyn CW (2000) Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology. J Exp Biol 203:1173–1191

    CAS  PubMed  Google Scholar 

  • Pörtner H-O, Bock C, Mark FC (2017) Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 220:2685–2696. https://doi.org/10.1242/jeb.134585

    Article  PubMed  Google Scholar 

  • Prosser CL (1973) Temperature. In: Prosser CL (ed) Comparative animal physiology. WB Saunders, Philadelphia, pp 362–428

    Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    CAS  Google Scholar 

  • Richards FA (1965) Dissolved gases other than carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic Press, New York

    Google Scholar 

  • Richards JG (2009) Metabolic and molecular responses of fish to hypoxia. In: Richards JG, Farrell AP, Brauner CJ (eds) Fish physiology: hypoxia, vol 27. Elsevier, San Diego, pp 443–485

    Google Scholar 

  • Rivest EB, Jellison B, Ng G, Satterthwaite EV, Bradley HL, Williams SL, Gaylord B (2019) Mechanisms involving sensory pathway steps inform impacts of global climate change on ecological processes. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00346

    Article  Google Scholar 

  • Robbins LL, Lisle JT (2018) Regional acidification trends in Florida shellfish estuaries: a 20+ year look at pH, oxygen, temperature, and salinity. Estuar Coasts 41:1268–1281

    CAS  Google Scholar 

  • Roche DG, Binning SA, Bosiger Y, Johansen JL, Rummer JL (2013) Finding the best estimates of metabolic rates in a coral reef fish. J Exp Biol 216:2103–2110

    PubMed  Google Scholar 

  • Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW (2016) A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv Physiol 4:cow012. https://doi.org/10.1093/conphys/cow012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rummer JL, Couturier CS, Stecyk JAW, Gardiner NM, Kinch JP, Nilsson GE, Munday PL (2014) Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob Change Biol 20:1055–1066

    Google Scholar 

  • Sandblom E, Gräns A, Axelsson M, Seth H (2014) Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proc R Soc B 281:20141490. https://doi.org/10.1098/rspb.2014.1490

    Article  PubMed  Google Scholar 

  • Saszik S, Bilotta J (1999) The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish. Vis Res 39:1051–1058

    CAS  PubMed  Google Scholar 

  • Schubert H, Sagert S, Forster RM (2001) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgol Mar Res 55:12–22

    Google Scholar 

  • Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50:1166–1180

    Google Scholar 

  • Schwieterman GD, Crear DP, Anderson BN, Lavoie DR, Sulikowski JA, Bushnell PG (2019) Brill RW (2019) Combined effects of acute temperature change and elevated pCO2 on the metabolic rates and hypoxia tolerances of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata). Biology 8:56. https://doi.org/10.3390/biology8030056

    Article  CAS  PubMed Central  Google Scholar 

  • Semmens BX, Buhle ER, Salomon AK, Pattengill-Semmens CV (2004) A hotspot of non-native marine fishes: evidence for the aquarium trade as an invasion pathway. Mar Ecol Prog Ser 266:239–244

    Google Scholar 

  • Siebeck UE, Marshall JN (2001) Ocular media transmission of coral reef fish—can coral reef fish see ultraviolet light? Vis Res 41:133–149

    CAS  PubMed  Google Scholar 

  • Snyder S, Nadler LE, Bayley JS, Svendsen MBS, Johansen JL, Domenici P, Steffensen JF (2016) Effect of closed v. intermittent-flow respirometry on hypoxia tolerance in the shiner perch Cymatogaster aggregata. J Fish Biol 88:252–264

    CAS  PubMed  Google Scholar 

  • Stavenga DG, Smiths RP, Hoenders BJ (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis Res 33:1011–1017

    CAS  PubMed  Google Scholar 

  • Steell SC, Van Leeuwen TE, Brownscombe JW, Cooke SJ, Eliason EJ (2019) An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish (Pterois spp.). J Exp Biol 222:jeb209437

    PubMed  Google Scholar 

  • Steffensen JF (1989) Some errors in respirometry of aquatic breathers: how to avoid them and correct for them. Fish Physiol Biochem 6:49–59

    CAS  PubMed  Google Scholar 

  • Svendsen MBS, Bushnell PG, Steffensen JF (2016) Design and setup of intermittent-flow respirometry system for aquatic organisms. J Fish Biol 88:26–50

    CAS  PubMed  Google Scholar 

  • Tyler RM, Brady DC, Targett TE (2009) Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coasts 32:123–145

    CAS  Google Scholar 

  • Ultsch GR, Regan MD (2019) The utility and determination of Pcrit in fishes. J Exp Biol 222:jeb203646

    PubMed  Google Scholar 

  • Weissgerber TL, Milic NM, Winham SJ, Garovic VN (2015) Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol 13:e1002128

    PubMed  PubMed Central  Google Scholar 

  • Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR, Ray GC, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297

    Google Scholar 

  • Whitfield PE, Muñoz RC, Buckel CA, Degan BP, Freshwater DW, Hare JA (2014) Native fish community structure and Indo-Pacific lionfish Pterois volitans densities along a depth-temperature gradient in Onslow Bay, North Carolina, USA. Mar Ecol Prog Ser 509:241–254

    Google Scholar 

  • Wing SR, Leichter JJ, Denny MW (1993) A dynamic model for wave induced light fluctuations in a kelp forest. Limnol Oceanogr 38:396–407

    Google Scholar 

  • Wood CM (2018) The fallacy of the Pcrit—are there more useful alternatives? J Exp Biol 221:jeb163717

    PubMed  Google Scholar 

  • Zimmermann C, Kunzmann A (2001) Baseline respiration and spontaneous activity of sluggish marine tropical fish of the family Scorpaenidae. Mar Ecol Prog Ser 219:229–239

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Rock the Ocean Foundation and Allen Levan. AZH was supported by NSF 1600691 and NSF 1846004. Special thanks to Dynasty Marine Associates Inc. in assisting with lionfish collections, Megan Byer who assisted with eye dissections, and Brian Naff who provided invaluable fish husbandry experience. This is contribution number 3882 from the Virginia Institute of Marine Science, College of William & Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Brill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasenei, A., Kerstetter, D.W., Horodysky, A.Z. et al. Physiological limits to inshore invasion of Indo-Pacific lionfish (Pterois spp.): insights from the functional characteristics of their visual system and hypoxia tolerance. Biol Invasions 22, 2079–2097 (2020). https://doi.org/10.1007/s10530-020-02241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-020-02241-5

Keywords

Navigation