Skip to main content
Log in

Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Bi2Te3-based materials have been widely utilized for commercial bulk thermoelectric (TE) devices. For the manufacture of miniaturized TE devices, the large-scale deposition of high-performance Bi2Te3-based thin films is crucial. However, it has not yet been effectively resolved. Herein, the Bi0.5Sb1.5Te3 films with different thicknesses were grown on sapphire substrates by controlling the co-sputtering time. We reveal that the film thickness has a significant impact on the electrical transport properties. Due to the mutual influence of electrical conductivity and Seebeck coefficient, there exists an optimal thickness with the maximum power factor is as high as 2900 μW m−1 K−2. Therefore, systematic research on the thickness-dependent TE characteristics of Bi2Te3-based films and the deposition of high-performance films will provide important information for the large-scale development of high-performance micro-TE devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461

    Article  CAS  Google Scholar 

  • He J, Tritt TM (2017) Advances in thermoelectric materials research looking back and move forward. Science 357:eaak9997

    Article  CAS  Google Scholar 

  • Synder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  CAS  Google Scholar 

  • Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Chen G et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  CAS  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:593–602

    Article  CAS  Google Scholar 

  • Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Article  CAS  Google Scholar 

  • Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R (2009) On-chip cooling by superlattice-based thin-film thermoelectrics. Nat Nanotech 4:235–238

    Article  CAS  Google Scholar 

  • Bulman G, Barletta P et al (2016) Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat Commun 7:10302

    Article  CAS  Google Scholar 

  • Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  CAS  Google Scholar 

  • Hou WK, Nie XL, Zhao WY et al (2018) Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50:766–776

    Article  CAS  Google Scholar 

  • Mu X, Zhou HY, Zhang QJ et al (2017) Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 film with high-crystallinity via layer-by-layer in-situ Growth. Nano Energy 33:55–64

    Article  CAS  Google Scholar 

  • Suh D, Lee S, Mun H, Baik S et al (2018) Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13:67–76

    Article  CAS  Google Scholar 

  • Li YY, Wang GA, Xue QK et al (2010) Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv Mater 22:4002–4007

    Article  CAS  Google Scholar 

  • Zhang JS, Xue QK, Wang YY et al (2015) Disentangling the magnetoelectric and thermoelectric transport in topological insulator thin films. Phys Rev B 91:075431

    Article  CAS  Google Scholar 

  • Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172

    Article  CAS  Google Scholar 

  • Tan M, Deng Y, Wang Y (2014) Ordered structure and high thermoelectric properties of Bi2(Te, Se)3 nanowire array. Nano Energy 3:144–151

    Article  CAS  Google Scholar 

  • Jeon SJ, Jeon H, Lee HJ et al (2013) Microstructure evolution of sputtered BiSbTe thermoelectric films during post-annealing and its effects on the thermoelectric properties. J Alloy Compd 553:343–349

    Article  CAS  Google Scholar 

  • Takashiri M, Tanaka S, Miyazaki K, Tsukamoto H (2010) Cross-plane thermal conductivity of highly oriented nanocrystalline bismuth antimony telluride thin films. J Alloy Compd 490:L44–L47

    Article  CAS  Google Scholar 

  • Aziz AA, Elsayed M, Sedky S et al (2010) Pulsed laser deposition of bismuth telluride thin films for microelectromechanical systems thermoelectric energy harvesters. J Electron Mater 39:1920–1925

    Article  CAS  Google Scholar 

  • Chang HC, Chen CH, Kuo YK (2013) Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces. Nanoscale 5:7017–7025

    Article  CAS  Google Scholar 

  • Golgovici F, Cojocaru A, Anicai L, Visan T (2011) Surface characterization of BiSbTe thermoelectric films electrodeposited from chlorides aqueous solutions and choline chloride based ionic liquids. Mater Chem Phys 126:700–706

    Article  CAS  Google Scholar 

  • Le PH, Liao CN, Luo CW, Leu J (2014) Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition. J Alloy Compd 615:546–552

    Article  CAS  Google Scholar 

  • Makala RS, Jagannadham K, Sales BC (2003) Pulsed laser deposition of Bi2Te3-based thermoelectric thin films. J Appl Phys 94:3907–3918

    Article  CAS  Google Scholar 

  • Peranio N, Winkler M, Dürrschnabel M, König J, Eibl O (2013) Assessing antisite defect and impurity concentrations in Bi2Te3 based thin films by high-accuracy chemical analysis. Adv Funct Mater 23:4969–4976

    Article  CAS  Google Scholar 

  • Linseis V, Volklein F, Woias P et al (2018) Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform. Semicond Sci Tech 33:085014

    Article  CAS  Google Scholar 

  • Duan XK, Yang JY, Bao SQ et al (2006) Thickness and temperature dependence of electrical resistivity of p-type Bi0.5Sb1.5Te3 thin films prepared by flash evaporation method. J Phys D Appl Phys 39:5064–5068

    Article  CAS  Google Scholar 

  • Cao LL, Deng Y, Zhu W et al (2013) Facile synthesis of preferential Bi0.5Sb1.5Te3.0 nanolayered thin films with high power factor by the controllable layer thickness. J Nanopart Res 15:2088

    Article  CAS  Google Scholar 

  • Liu W, Chi H, Uher C et al (2016) Origins of enhanced thermoelectric power factor in topologically insulating Bi0.64Sb1.36Te3 thin films. Appl Phys Lett 108:043902

    Article  CAS  Google Scholar 

  • Shen H, Lee S, Kang JG et al (2018) Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films. Appl Surf Sci 429:115–120

    Article  CAS  Google Scholar 

  • Hwang JY, Kim YM, Lee KH, Ohta H, Kim SW (2017) Te monolayer-driven spontaneous van der Waals epitaxy of two-dimensional pnictogen chalcogenide film on sapphire. Nano Lett 10:3140–3145

    Google Scholar 

  • Stary Z, Horak J, Stordeur M, Stolzer M (1988) Antisite defects in Sb2-XBixTe3 mixed-crystals. J Phys Chem Solids 49:29–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Key R&D Program of China (2018YFA0703400), Liaoning Revitalization Talents Program (No. XLYC1807209), and the Distinguished Young Scholars for Science and Technology of Dalian City (2016RJ05). We thank Prof. Can Li for the Hall measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Zhang or Peng Jiang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhang, Z., Liu, Z. et al. Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films. Appl Nanosci 10, 2375–2381 (2020). https://doi.org/10.1007/s13204-020-01441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01441-8

Keywords

Navigation