Skip to main content
Log in

Utilizing Gelatinized Starchy Waste from Rice Noodle Factory as Substrate for L(+)-Lactic Acid Production by Amylolytic Lactic Acid Bacterium Enterococcus faecium K-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To valorize starchy waste from rice noodle factory, bioconversion of gelatinized starchy waste (GSW) to value-added product as L(+)-lactic acid, the monomer for polylactate synthesis, was investigated using amylolytic lactic acid bacterium, Enterococcus faecium K-1. Screening for appropriate nitrogen source to replace expensive organic nitrogen sources revealed that corn steep liquor (CSL) was the most suitable regarding high efficacy for L(+)-LA achievement and low-cost property. The successful applying statistic experimental design, Plackett-Burman design incorporated with central composite design (CCD), predicted the maximum L(+)-LA of 93.07 g/L from the optimized medium (OM) containing 125.7 g/L GSW and 207.3 g/L CSL supplemented with CH3COONa, MgSO4, MnSO4, K2HPO4, CaCl2, (NH4)2HC6H5O7, and Tween80. Minimizing the medium cost by removal of all inorganic salts and Tween80 from OM was not an effect on L(+)-LA yield. Fermentation using the optimized medium without minerals (OM-Mi) containing only GSW (125.7 g/L) and CSL (207.3 g/L) in a 10-L fermenter was also successful. Thinning GSW with α-amylase from Lactobacillus plantarum S21 increased L(+)-LA productivity in the early stage of 24-h fermentation. Not only showing the feasible bioconversion process for GSW utilizing as a substrate for L(+)-LA production, this research also demonstrated the efficient model for industrial starchy waste valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7–14.

    Article  Google Scholar 

  2. Titapiwatanakun, B. (2012). The rice situation in Thailand. Manila.

  3. Kanpiengjai, A., Lumyong, S., Pathom-aree, W., & Khanongnuch, C. (2014). Starchy effluent from rice noodle manufacturing process as feasible substrate for direct lactic acid production by Lactobacillus plantarum S21. Journal of the Korean Society for Applied Biological Chemistry, 57(2), 217–220.

    Article  CAS  Google Scholar 

  4. Muangrat, R., & Nuankham, C. (2018). Moisture sorption isotherm and changes in physico-mechanical properties of films produced from waste flour and their application on preservation quality of fresh strawberry. Food Science & Nutrition, 6(3), 585–593.

    Article  CAS  Google Scholar 

  5. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 74(1), 69–80.

    Article  CAS  Google Scholar 

  6. Ohkouchi, Y., & Inoue, Y. (2007). Impact of chemical components of organic wastes on L (+)-lactic acid production. Bioresource Technology, 98(3), 546–553.

    Article  CAS  Google Scholar 

  7. Tang, J., Wang, X., Hu, Y., Zhang, Y., & Li, Y. (2016). Lactic acid fermentation from food waste with indigenous microbiota: effects of pH, temperature and high OLR. Waste Management, 52, 278–285.

    Article  CAS  Google Scholar 

  8. Liang, S., Gliniewicz, K., Gerritsen, A. T., & McDonald, A. G. (2016). Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid. Bioresource Technology, 208, 7–12.

    Article  CAS  Google Scholar 

  9. Unban, K., Kanpiengjai, A., Takata, G., Uechi, K., Lee, W. C., & Khanongnuch, C. (2017). Amylolytic enzymes acquired from L-lactic acid producing Enterococcus faecium K-1 and improvement of direct lactic acid production from cassava starch. Applied Biochemistry and Biotechnology, 183(1), 155–170.

    Article  CAS  Google Scholar 

  10. Yu, L., Lei, T., Ren, X., Pei, X., & Feng, Y. (2008). Response surface optimization of L-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 39(3), 496–502.

    Article  CAS  Google Scholar 

  11. Liu, B., Yang, M., Qi, B., Chen, X., Su, Z., & Wan, Y. (2010). Optimizing l-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochemical Engineering Journal, 52(2–3), 212–219.

    Article  CAS  Google Scholar 

  12. Kwon, S., Lee, P. C., Lee, E. G., Keun Chang, Y., & Chang, N. (2000). Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology, 26(2–4), 209–215.

    Article  CAS  Google Scholar 

  13. Maddipati, P., Atiyeh, H. K., Bellmer, D. D., & Huhnke, R. L. (2011). Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technology, 102(11), 6494–6501.

    Article  CAS  Google Scholar 

  14. Thakur, A., Panesar, P. S., & Saini, M. S. (2019). L (+)-lactic acid production by immobilized Lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources. Waste and Biomass Valorization, 1–11.

  15. Unban, K., Kanpiengjai, A., Khatthongngam, N., Saenjum, C., & Khanongnuch, C. (2019). Simultaneous bioconversion of gelatinized starchy waste from the rice noodle manufacturing process to lactic acid and maltose-forming α-amylase by Lactobacillus plantarum S21, using a low-cost medium. Fermentation, 5(2), 32.

    Article  CAS  Google Scholar 

  16. Kanpiengjai, A., Lumyong, S., Nguyen, T. H., Haltrich, D., & Khanongnuch, C. (2015). Characterization of a maltose-forming α-amylase from an amylolytic lactic acid bacterium Lactobacillus plantarum S21. Journal of Molecular Catalysis B: Enzymatic, 120, 1–8.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  18. Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., & Foster, L. J. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26.

  19. Chiani, M., Akbarzadeh, A., Farhangi, A., & Mehrabi, M. (2010). Production of desferrioxamine B (Desferal) using corn steep liquor in Streptomyces pilosus. Pakistan Journal of Biological Sciences, 13(23), 1151–1155.

    Article  CAS  Google Scholar 

  20. Hull, S. R., Yang, B. Y., Venzke, D., Kulhavy, K., & Montgomery, R. (1996). Composition of corn steep water during steeping. Journal of Agricultural and Food Chemistry, 44(7), 1857–1863.

    Article  CAS  Google Scholar 

  21. Jin, B., Huang, L. P., & Lant, P. (2003). Rhizopus arrhizus–a producer for simultaneous saccharification and fermentation of starch waste materials to L (+)-lactic acid. Biotechnology Letters, 25(23), 1983–1987.

    Article  CAS  Google Scholar 

  22. Zhang, Z., Jin, B., & Kelly, J. (2007). Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World Journal of Microbiology and Biotechnology, 23(2), 229–236.

    Article  CAS  Google Scholar 

  23. de Lima, C. B., Coelho, L. F., Blanco, K. C., & Contiero, J. (2009). Response surface optimization of D (−)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. African Journal of Biotechnology, 8(21), 5842–5846.

    Article  Google Scholar 

  24. Xiao, X., Hou, Y., Du, J., Sun, D., Bai, G., & Luo, G. (2012). Determination of vitamins B2, B3, B6 and B7 in corn steep liquor by NIR and PLSR. Transactions of Tianjin University, 18(5), 372–377.

    Article  CAS  Google Scholar 

  25. Shibata, K., Flores, D. M., Kobayashi, G., & Sonomoto, K. (2007). Direct L-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme and Microbial Technology, 41(1–2), 149–155.

    Article  CAS  Google Scholar 

  26. Altaf, M., Naveena, B. J., & Reddy, G. (2007). Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation. Bioresource Technology, 98(3), 498–503.

    Article  CAS  Google Scholar 

  27. Ohkouchi, Y., & Inoue, Y. (2006). Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresource Technology, 97(13), 1554–1562.

    Article  CAS  Google Scholar 

  28. John, R. P., Nampoothiri, K. M., & Pandey, A. (2006). Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic acid production using Lactobacilli. Applied Biochemistry and Biotechnology, 134(3), 263–272.

    Article  CAS  Google Scholar 

  29. Lu, Z., He, F., Shi, Y., Lu, M., & Yu, L. (2010). Fermentative production of L (+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresource Technology, 101(10), 3642–3648.

    Article  CAS  Google Scholar 

  30. Yun, J. S., Wee, Y. J., Kim, J. N., & Ryu, H. W. (2004). Fermentative production of dl-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnology Letters, 26(20), 1613–1616.

    Article  CAS  Google Scholar 

  31. Oh, H., Wee, Y. J., Yun, J. S., Han, S. H., Jung, S., & Ryu, H. W. (2005). Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technology, 96(13), 1492–1498.

    Article  CAS  Google Scholar 

  32. Bhanwar, S., Singh, A., & Ganguli, A. (2014). Effective conversion of industrial starch waste to L-lactic acid by Lactococcus lactis in a dialysis sac bioreactor. Annals of Microbiology, 64(3), 1447–1452.

    Article  CAS  Google Scholar 

  33. Pagana, I., Morawicki, R., & Hager, T. J. (2014). Lactic acid production using waste generated from sweet potato processing. International Journal of Food Science & Technology, 49(2), 641–649.

    Article  CAS  Google Scholar 

  34. Moon, S. K., Lee, J., Song, H., Cho, J. H., Choi, G. W., & Seung, D. (2013). Characterization of ethanol fermentation waste and its application to lactic acid production by Lactobacillus paracasei. Bioprocess and Biosystems Engineering, 36(5), 547–554.

    Article  CAS  Google Scholar 

  35. Liu, G., Sun, J., Zhang, J., Tu, Y., & Bao, J. (2015). High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling. Bioresource Technology, 198, 803–810.

    Article  CAS  Google Scholar 

  36. Manandhar, A., & Shah, A. (2020). Techno-economic analysis of bio-based lactic acid production utilizing corn grain as feedstock. Processes, 8(2), 199.

    Article  Google Scholar 

  37. Åkerberg, C., & Zacchi, G. (2000). An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technology, 75(2), 119–126.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Material Science Research Center, Chiang Mai University for supports and encouragement on this research.

Funding

Chiang Mai University provided financial support via the postdoctoral fellowship and adjunct professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chartchai Khanongnuch.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unban, K., Khanongnuch, R., Kanpiengjai, A. et al. Utilizing Gelatinized Starchy Waste from Rice Noodle Factory as Substrate for L(+)-Lactic Acid Production by Amylolytic Lactic Acid Bacterium Enterococcus faecium K-1. Appl Biochem Biotechnol 192, 353–366 (2020). https://doi.org/10.1007/s12010-020-03314-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03314-w

Keywords

Navigation