Skip to main content

Advertisement

Log in

Nanoparticle-Mediated TGF-β Release from Microribbon-Based Hydrogels Accelerates Stem Cell-Based Cartilage Formation In Vivo

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Conventional nanoporous hydrogels often lead to slow cartilage deposition by MSCs in 3D due to physical constraints and requirement for degradation. Our group has recently reported macroporous gelatin microribbon (μRB) hydrogels, which substantially accelerate MSC-based cartilage formation in vitro compared to conventional gelatin hydrogels. To facilitate translating the use of μRB-based scaffolds for supporting stem cell-based cartilage regeneration in vivo, there remains a need to develop a customize-designed drug delivery system that can be incorporated into μRB-based scaffolds. Towards this goal, here we report polydopamine-coated mesoporous silica nanoparticles (MSNs) that can be stably incorporated within the macroporous μRB scaffolds, and allow tunable release of transforming growth factor (TGF)-β3. We hypothesize that increasing concentration of polydopamine coating on MSNs will slow down TGF- β3 release, and TGF-β3 release from polydopamine-coated MSNs can enhance MSC-based cartilage formation in vitro and in vivo. We demonstrate that TGF-β3 released from MSNs enhance MSC-based cartilage regeneration in vitro to levels comparable to freshly added TGF-β3 in the medium, as shown by biochemical assays, mechanical testing, and histology. Furthermore, when implanted in vivo in a mouse subcutaneous model, only the group containing MSN-mediated TGF-β3 release supported continuous cartilage formation, whereas control group without MSN showed loss of cartilage matrix and undesirable endochondral ossification. The modular design of MSN-mediated drug delivery can be customized for delivering multiple drugs with individually optimized release kinetics, and may be applicable to enhance regeneration of other tissue types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Andrades, J. A., S. C. Motaung, P. Jiménez-Palomo, S. Claros, J. M. López-Puerta, J. Becerra, et al. Induction of superficial zone protein (SZP)/lubricin/PRG 4 in muscle-derived mesenchymal stem/progenitor cells by transforming growth factor-β1 and bone morphogenetic protein-7. Arthritis Res Therapy 14:R72, 2012.

    CAS  Google Scholar 

  2. Bai, Y.-X., Y.-F. Li, Y. Yang, and L.-X. Yi. Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process. Biochem. 41:770–777, 2006.

    CAS  Google Scholar 

  3. Barati, D., S. R. P. Shariati, S. Moeinzadeh, J. M. Melero-Martin, A. Khademhosseini, and E. Jabbari. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. J. Control. Release 223:126–136, 2016.

    CAS  PubMed  Google Scholar 

  4. Bernsmann, F., V. Ball, F. Addiego, A. Ponche, M. Michel, J. J. D. A. Gracio, et al. Dopamine–melanin film deposition depends on the used oxidant and buffer solution. Langmuir 27:2819–2825, 2011.

    CAS  PubMed  Google Scholar 

  5. Bharti, C., U. Nagaich, A. K. Pal, and N. Gulati. Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharm. Investig. 5:124, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng, W., J. Nie, L. Xu, C. Liang, Y. Peng, G. Liu, et al. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl. Mater. Interfaces 9:18462–18473, 2017.

    CAS  PubMed  Google Scholar 

  7. Chu, C. R., M. Szczodry, and S. Bruno. Animal models for cartilage regeneration and repair. Tissue Eng. B 16:105–115, 2010.

    Google Scholar 

  8. Conrad, B., L. H. Han, and F. Yang. Gelatin-based microribbon hydrogels accelerate cartilage formation by mesenchymal stem cells in 3D. Tissue Eng. A 24:1630–1641, 2018.

    Google Scholar 

  9. Erickson, I. Optimization and Translation of MSC-Based Hyaluronic Acid Hydrogels for Cartilage Repair. Pennsylvania: University of Pennsylvania, 2011.

    Google Scholar 

  10. Erickson, I. E., S. R. Kestle, K. H. Zellars, M. J. Farrell, M. Kim, J. A. Burdick, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 8:3027–3034, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ertan, A. B., P. Yılgor, B. Bayyurt, A. C. Çalıkoğlu, Ç. Kaspar, F. N. Kök, et al. Effect of double growth factor release on cartilage tissue engineering. J. Tissue Eng. Regener. Med. 7:149–160, 2013.

    CAS  Google Scholar 

  12. Fahy, N., M. Alini, and M. J. Stoddart. Mechanical stimulation of mesenchymal stem cells: implications for cartilage tissue engineering. J. Orthop. Res. 36:52–63, 2018.

    PubMed  Google Scholar 

  13. Farrell, M. J., M. B. Fisher, A. H. Huang, J. I. Shin, K. M. Farrell, and R. L. Mauck. Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture. J Biomech. 47:2173–2182, 2014.

    PubMed  Google Scholar 

  14. Fong, C.-Y., A. Subramanian, K. Gauthaman, J. Venugopal, A. Biswas, S. Ramakrishna, et al. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev. Rep. 8:195–209, 2012.

    CAS  PubMed  Google Scholar 

  15. Freyria, A.-M., and F. Mallein-Gerin. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury 43:259–265, 2012.

    PubMed  Google Scholar 

  16. Gegg, C., and F. Yang. Spatially patterned microribbon-based hydrogels induce zonally-organized cartilage regeneration by stem cells in 3D. Acta Biomater. 101:196–205, 2019.

    PubMed  Google Scholar 

  17. Han, L.-H., B. Conrad, M. T. Chung, L. Deveza, X. Jiang, A. Wang, et al. Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J. Biomed. Mater. Res. A 104:1321, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. He, Q., and J. Shi. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 21:5845–5855, 2011.

    CAS  Google Scholar 

  19. Karimi, T., D. Barati, O. Karaman, S. Moeinzadeh, and E. Jabbari. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integr. Biol. 7:112–127, 2014.

    Google Scholar 

  20. Kim, T.-K., B. Sharma, C. Williams, M. Ruffner, A. Malik, E. G. McFarland, et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartil. 11:653–664, 2003.

    Google Scholar 

  21. Kisiday, J., M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA 99:9996–10001, 2002.

    CAS  PubMed  Google Scholar 

  22. Kondo, M., K. Yamaoka, K. Sonomoto, S. Fukuyo, K. Oshita, Y. Okada, et al. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE 8:e79463, 2013.

    PubMed  PubMed Central  Google Scholar 

  23. Lee, H., S. M. Dellatore, W. M. Miller, and P. B. Messersmith. Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, S., X. Tong, L.-H. Han, A. Behn, and F. Yang. Aligned microribbon-like hydrogels for guiding three-dimensional smooth muscle tissue regeneration. J. Biomed. Mater. Res. A 104:1064–1071, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lissenberg-Thunnissen, S. N., D. J. de Gorter, C. F. Sier, and I. B. Schipper. Use and efficacy of bone morphogenetic proteins in fracture healing. Int. Orthop. 35:1271, 2011.

    PubMed  PubMed Central  Google Scholar 

  26. Liu, C.-Y., and C.-J. Huang. Functionalization of polydopamine via the aza-michael reaction for antimicrobial interfaces. Langmuir 32:5019–5028, 2016.

    CAS  PubMed  Google Scholar 

  27. Madry, H., A. Rey-Rico, J. K. Venkatesan, B. Johnstone, and M. Cucchiarini. Transforming growth factor beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng. B 20:106–125, 2013.

    Google Scholar 

  28. Motoyama, M., M. Deie, A. Kanaya, M. Nishimori, A. Miyamoto, S. Yanada, et al. In vitro cartilage formation using TGF-β-immobilized magnetic beads and mesenchymal stem cell-magnetic bead complexes under magnetic field conditions. J. Biomed. Mater. Res. A 92:196–204, 2010.

    PubMed  Google Scholar 

  29. Mueller, M. B., M. Fischer, J. Zellner, A. Berner, T. Dienstknecht, L. Prantl, et al. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Niger, C., K. E. Beazley, and M. Nurminskaya. Induction of chondrogenic differentiation in mesenchymal stem cells by TGF-beta cross-linked to collagen-PLLA [poly (L-lactic acid)] scaffold by transglutaminase 2. Biotechnol. Lett. 35:2193–2199, 2013.

    CAS  PubMed  Google Scholar 

  32. O’Conor, C. J., N. Case, and F. Guilak. Mechanical regulation of chondrogenesis. Stem Cell Res. Therapy 4:61, 2013.

    Google Scholar 

  33. Park, J. S., K. Na, D. G. Woo, H. N. Yang, and K.-H. Park. Determination of dual delivery for stem cell differentiation using dexamethasone and TGF-β3 in/on polymeric microspheres. Biomaterials 30:4796–4805, 2009.

    CAS  PubMed  Google Scholar 

  34. Pei, M., F. He, and G. Vunjak-Novakovic. Synovium-derived stem cell-based chondrogenesis. Differentiation 76:1044–1056, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelttari, K., A. Winter, E. Steck, K. Goetzke, T. Hennig, B. G. Ochs, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 54:3254–3266, 2006.

    CAS  PubMed  Google Scholar 

  36. Scotti, C., B. Tonnarelli, A. Papadimitropoulos, A. Scherberich, S. Schaeren, A. Schauerte, et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl Acad. Sci. 107:7251–7256, 2010.

    CAS  PubMed  Google Scholar 

  37. Sellers, R. S., D. Peluso, and E. A. Morris. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. JBJS 79:1452–1463, 1997.

    CAS  Google Scholar 

  38. Shintani, N., K. A. Siebenrock, and E. B. Hunziker. TGF-ss1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS ONE 8:e53086, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Slowing, I. I., J. L. Vivero-Escoto, C. W. Wu, and V. S. Lin. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60:1278–1288, 2008.

    CAS  PubMed  Google Scholar 

  40. Spiller, K. L., S. A. Maher, and A. M. Lowman. Hydrogels for the repair of articular cartilage defects. Tissue Eng. B 17:281–299, 2011.

    CAS  Google Scholar 

  41. Steck, E., J. Fischer, H. Lorenz, T. Gotterbarm, M. Jung, and W. Richter. Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage. Stem Cells Dev. 18:969–978, 2009.

    CAS  PubMed  Google Scholar 

  42. Tamanna, T., J. B. Bulitta, C. B. Landersdorfer, V. Cashin, and A. Yu. Stability and controlled antibiotic release from thin films embedded with antibiotic loaded mesoporous silica nanoparticles. RSC Adv. 5:107839–107846, 2015.

    CAS  Google Scholar 

  43. Tanaka, H., T. Sugita, Y. Yasunaga, S. Shimose, M. Deie, T. Kubo, et al. Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. J. Biomed. Mater. Res. A 73:255–263, 2005.

    PubMed  Google Scholar 

  44. Tang, F., L. Li, and D. Chen. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24:1504–1534, 2012.

    CAS  PubMed  Google Scholar 

  45. Trippel, S. B. Growth factor actions on articular cartilage. J. Rheumatol. Suppl. 43:129–132, 1995.

    CAS  PubMed  Google Scholar 

  46. Vinardell, T., E. J. Sheehy, C. T. Buckley, and D. J. Kelly. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Engineering. A 18:1161–1170, 2012.

    CAS  Google Scholar 

  47. Wang, T., J. H. Lai, and F. Yang. Effects of hydrogel stiffness and extracellular compositions on modulating cartilage regeneration by mixed populations of stem cells and chondrocytes in vivo. Tissue Eng. A 22:1348–1356, 2016.

    CAS  Google Scholar 

  48. Wang, Y., Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–327, 2015.

    CAS  PubMed  Google Scholar 

  49. Wei, Y., L. Gao, L. Wang, L. Shi, E. Wei, B. Zhou, et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 24:681–691, 2017.

    CAS  PubMed  Google Scholar 

  50. Winter, A., S. Breit, D. Parsch, K. Benz, E. Steck, H. Hauner, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 48:418–429, 2003.

    CAS  PubMed  Google Scholar 

  51. Worster, A. A., B. D. Brower-Toland, L. A. Fortier, S. J. Bent, J. Williams, and A. J. Nixon. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J. Orthop. Res. 19:738–749, 2001.

    CAS  PubMed  Google Scholar 

  52. Xia, P., X. Wang, Y. Qu, Q. Lin, K. Cheng, M. Gao, et al. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res. Therapy 8:281, 2017.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank NIH R01DE024772, NIH R01AR074502, Stanford Coulter translational seed grant, and Stanford SPARK program for funding. C.G. would like to thank the Stanford Bio-X graduate fellowship for support. The authors would also like to thank Anthony Behn for technical assistance with mechanical testing.

Conflict of interest

No potential conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 4201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, D., Gegg, C. & Yang, F. Nanoparticle-Mediated TGF-β Release from Microribbon-Based Hydrogels Accelerates Stem Cell-Based Cartilage Formation In Vivo. Ann Biomed Eng 48, 1971–1981 (2020). https://doi.org/10.1007/s10439-020-02522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02522-z

Keywords

Navigation