Skip to main content
Log in

Computational Modelling of the Bioheat Transfer Process in Human Skin Subjected to Direct Heating and/or Cooling Sources: A Systematic Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this systematic review is to analyze characteristics and methodologies utilized in bioheat transfer models of human skin to provide state-of-the-art knowledge on the topic. This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. PubMed, EMBASE and Web of Science databases were searched up to May 30th, 2019 for bioheat transfer models focusing on direct contact between skin and temperature (heat and/or cold) source. Ten studies were included. A 16-item checklist was used to assess their methodological quality. Four studies analyzed healthy skin and six included pathological conditions. All determined skin’s thermal behavior, and studies including pathological conditions also analyzed burn damage. Studies did not present a wide variety of mathematical formulation, emphasizing on modelling equations of well-established models from the literature, such as the Pennes’ bioheat transfer equation, and the Henriques and Moritz model to quantify skin damage. Reporting of modelling characteristics and formulation of the computational models is not standardized and there is shortage of implementation of validation procedures, hindering representative conclusions. The lack of validation procedures led to low methodological quality. However, all studies provided strategies and parameters as starting points for future developments in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. Aksan, A., and J. J. McGrath. Thermomechanical analysis of soft-tissue thermotherapy. J. Biomech. Eng. 125:700–708, 2003.

    Article  PubMed  Google Scholar 

  2. Anvari, B., T. E. Milner, B. S. Tanenbaum, and J. S. Nelson. A comparative study of human skin thermal response to sapphire contact and cryogen spray cooling. IEEE Trans. Biomed. Eng. 45:934–941, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Baldwin, A., J. Xu, and D. Attinger. How to cool a burn: a heat transfer point of view. J. Burn Care Res. 33:176–187, 2012.

    Article  PubMed  Google Scholar 

  4. Becker, S. M., and A. V. Kuznetsov. 3. Quantitative models of thermal damage to cells and tissues. In: Heat Transfer and Fluid Flow in Biological Processes, edited by S. M. Becker, and A. V. Kuznetsov. Amsterdam: Elsevier, 2015, pp. 59–76.

    Google Scholar 

  5. Blake, A. S. T., G. W. Petley, and C. D. Deakin. Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits. Br. J. Anaesth. 84:28–32, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Brooks, J., and I. Tracey. From nociception to pain perception: imaging the spinal and supraspinal pathways. J. Anat. 207:19–33, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bülow, J., L. Friberg, O. Gaardsting, and M. Hansen. Frontal subcutaneous blood flow, and epi- and subcutaneous temperatures during scalp cooling in normal man. Scand. J. Clin. Lab. Investig. 45:505–508, 1985.

    Article  Google Scholar 

  8. Cain, D. M., S. G. Khasabov, and D. A. Simone. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J. Neurophysiol. 85:1561–1574, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, J. N., and R. H. LaMotte. Latency to detection of first pain. Brain Res. 266:203–208, 1983.

    Article  CAS  PubMed  Google Scholar 

  10. CFD-ACE-GUI User Manual Volume II, CFD Research Corporation, 2003.

  11. Cohen, M. L. Measurement of the thermal properties of human skin. A review. J. Investig. Dermatol. 69:333–338, 1977.

    Article  CAS  PubMed  Google Scholar 

  12. Dahan, S., J. M. Lagarde, V. Turlier, L. Courrech, and S. Mordon. Treatment of neck lines and forehead rhytids with a nonablative 1540-nm er: glass laser: a controlled clinical study combined with the measurement of the thickness and the mechanical properties of the skin. Dermatol. Surg. 30:872–879, 2004.

    PubMed  Google Scholar 

  13. Dennis, B. H., R. C. Eberhart, G. S. Dulikravich, and S. W. Radons. Finite-element simulation of cooling of realistic 3-D human head and neck. J. Biomech. Eng. 125:832–840, 2003.

    Article  PubMed  Google Scholar 

  14. Diller, K. R., L. J. Hayes, and C. R. Baxter. A mathematical model for the thermal efficacy of cooling therapy for burns. J. Burn Care Rehabil. 4:81–89, 1983.

    Article  Google Scholar 

  15. Duck, F. A. Physical Properties of Tissue, A Comprehensive Reference Book. London, UK: Academic Press, 1990.

    Google Scholar 

  16. Elkins, W., and J. G. Thomson. Instrumented thermal manikin. Acurex Corporation. Aerotherm Division Report No. AD-781, p. 176, 1973.

  17. Fiala, D., K. J. Lomas, and M. Stohrer. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87:1957–1972, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Geon-Mok, L., L. Kil-soong, L. Seung-Hun, C. Jong-duc, S. Eun-mi, C. Jung-sun, and K. Yang-junc. The study of standardization plan and usefulness of moxa combustion. J. Korean Acupunct. Moxibustion Soc. 20:65, 2003.

    Google Scholar 

  19. Henriques, F. C. Studies of thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. 43:489–502, 1947.

    Google Scholar 

  20. Henriques, F. C., and A. R. Moritz. Studies of thermal injury. I. The conduction of heat to and through skin and the temperatures attained therein. Am. J. Pathol. 23:531–549, 1947.

    Google Scholar 

  21. Huang, C., and T. W. H. Sheu. Study of the effect of moxibustion on the blood flow. Int. J. Heat Mass Transf. 63:141–149, 2013.

    Article  Google Scholar 

  22. Incropera, F. P., and D. P. Dewitt. Fundamentals of Heat and Mass Transfer (2nd ed.). New York: Wiley, 1981.

    Google Scholar 

  23. Jandera, V., D. A. Hudson, P. M. De Wet, P. M. Innes, and H. Rode. Cooling the burn wound: evaluation of different modalites. Burns 26:265–270, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Janssen, F. E. M., G. M. J. Van Leeuwen, and A. A. Van Steenhoven. Modelling of temperature and perfusion during scalp cooling. Phys. Med. Biol. 50:4065–4073, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Kara, Y. A. Burn etiology and pathogenesis. In: Hot Topics in Burn Injuries, edited by S. P. Kartal. Rijeka: InTech, 2018. https://doi.org/10.5772/intechopen.71379.

    Chapter  Google Scholar 

  26. King, T. C., and P. B. Price. Surface cooling following extensive burns. JAMA 183:677–678, 1963.

    CAS  PubMed  Google Scholar 

  27. Liberati, A., D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. BMJ 339:b2700, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, M., and S. Kauh. A study of the thermomechanical behavior of skin tissue in moxibustion using a mathematical method. Med. Acupunct. 24:89–96, 2012.

    Article  Google Scholar 

  29. Liu, M., S. K. Kauh, and S. Lim. A study of direct moxibustion using mathematical methods. Comput. Methods Biomech. Biomed. Engin. 15:383–391, 2012.

    Article  PubMed  Google Scholar 

  30. Maruyama, S., S. Takashima, J. Okajima, A. Komiya, T. Seki, and T. Yambe. Thermal therapy and evaluation by a precise temperature control device. Heat Transf. Res. 40:114–124, 2011.

    Article  Google Scholar 

  31. Moissenet, F., L. Modenese, and R. Dumas. Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: a systematic review. J. Biomech. 63:8–20, 2017.

    Article  CAS  PubMed  Google Scholar 

  32. Moritz, A. R. Studies of thermal injury. III. The pathology and pathogenesis of cutaneous burns, an experimental study. Am. J. Pathol. 23:915–941, 1947.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Moritz, A. R., and F. C. J. Henriques. Studies of thermal injury. II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol. 23:695–720, 1947.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Murat, T., C. Ünal, and P. Cem. The bio-heat transfer equation and its applications in hyperthermia treatments. Eng. Comput. 23:451–463, 2006.

    Article  Google Scholar 

  35. Ng, E. Y., and L. T. Chua. Mesh-independent prediction of skin burns injury. J. Med. Eng. Technol. 24:255–261, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Ng, E. Y.-K., and L. T. Chua. Prediction of skin burn injury. Part 2: parametric and sensitivity analysis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 216:171–183, 2002.

    Article  CAS  Google Scholar 

  37. Ng, E. Y. K., and L. T. Chua. Comparison of one- and two-dimensional programmes for predicting the state of skin burns. Burns 28:27–34, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen, N. L., R. T. Gun, A. L. Sparnon, and P. Ryan. The importance of immediate cooling-a case series of childhood burns in Vietnam. Burns 28:173–176, 2002.

    Article  PubMed  Google Scholar 

  39. Ninan, N., P. M. Simonkutty, S. Thomas, and Y. Grohens. Chapter 8—dermal tissue engineering: current trends. In: Nanotechnology Applications for Tissue Engineering, edited by S. Thomas, Y. Grohens, and N. Ninan. Amsterdam: Elsevier, 2015, pp. 125–131. https://doi.org/10.1016/C2014-0-00006-8.

    Chapter  Google Scholar 

  40. Nishitani, I. Combustion products of moxibustion. Jpn. Soc. Acupunct. Moxibustion, pp. 37–33, 1987.

  41. Özişik, M. N. Finite Difference Methods in Heat Transfer. London: CRC Press, 1994.

    Google Scholar 

  42. Özişik, M. N., and D. Y. Tzou. On the Wave Theory in Heat Conduction. Anaheim: ASME Winter Annlual Meeting, pp. 13–27, 1992.

    Google Scholar 

  43. Pearce, J. A., D. R. Kenneth, and J. W. Valvano. 45 Bioheat transfer. In: CRC Handbook of Thermal Engineering, edited by R. P. Chhabra. Boca Raton: CRC Press - Taylor & Francis Group, 2018, pp. 629–715.

    Google Scholar 

  44. Pennes, H. H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1:93–122, 1948.

    Article  CAS  PubMed  Google Scholar 

  45. Rodrigues, D. B., P. J. S. Pereira, P. Limao-Vieira, P. R. Stauffer, and P. F. Maccarini. Study of the one dimensional and transient bioheat transfer equation: multi-layer solution development and applications. Int. J. Heat Mass Transf. 62:153–162, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roetzel, W., and Y. Xuan. Transient response of the human limb to an external stimulus. Int. J. Heat Mass Transf. 41:229–239, 1998.

    Article  Google Scholar 

  47. Ryan, J. L. Ionizing radiation: the good, the bad, and the ugly. J. Investig. Dermatol. 132:985–993, 2012.

    Article  CAS  PubMed  Google Scholar 

  48. Rykaczewski, K. Modeling thermal contact resistance at the finger-object interface. Temperature 6:85–95, 2019.

    Article  Google Scholar 

  49. Saggin, B., M. Tarabini, and G. Lanfranchi. A device for the skin-contact thermal resistance measurement. IEEE Trans. Instrum. Meas. 61:489–495, 2012.

    Article  Google Scholar 

  50. Salvo, N., E. Barnes, J. van Draanen, E. Stacey, G. Mitera, D. Breen, A. Giotis, G. Czarnota, J. Pang, and C. de Angelis. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr. Oncol. 17(4):94, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Samaras, T., A. Christ, and N. Kuster. Effects of geometry discretization aspects on the numerical solution of the bioheat transfer equation with the FDTD technique. Phys. Med. Biol. 51:N221–N229, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. Sawada, Y., S. Urushidate, T. Yotsuyanagi, and K. Ishita. Is prolonged and excessive cooling of a scalded wound effective? Burns 23:55–58, 1997.

    Article  CAS  PubMed  Google Scholar 

  53. Sejrsen, P. Measurement of cutaneous blood flow by freely diffusible radioactive isotopes. Dan. Med. Bull. 18:1–38, 1972.

    Google Scholar 

  54. Tang, D. W., and N. Araki. The wave characteristics of thermal conduction in metallic films irradiated by ultra-short laser pulses. J. Phys. D. Appl. Phys. 29:2527–2533, 1996.

    Article  CAS  Google Scholar 

  55. Torvi, D. A., and J. D. Dale. A finite element model of skin subjected to a flash fire. ASME J. Biomech. Eng. 116:250–255, 1994.

    Article  CAS  Google Scholar 

  56. Tzou, D. Y. A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. Trans. ASME 117:8–16, 1995.

    Article  Google Scholar 

  57. Tzou, D. Y. Macro- to micro-scale heat transfer : the lagging behavior. Washington, DC: Taylor & Francis, 1997.

    Google Scholar 

  58. Valvano, J. W. Bioheat Transfer. In: Encyclopedia of Medical Devices and Instrumentation. Hoboken, NJ, USA: Wiley, 2006. https://doi.org/10.1002/0471732877.emd015.

  59. Van de Sompel, D., T. Y. Kong, and Y. Ventikos. Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: a new measure for cooling effectiveness. Med. Eng. Phys. 31:624–631, 2009.

    Article  PubMed  Google Scholar 

  60. Whitton, J. T., and J. D. Everall. The thickness of the epidermis. Br. J. Dermatol. 89:467–476, 1973.

    Article  CAS  PubMed  Google Scholar 

  61. Xu, F., M. Lin, and T. J. Lu. Modeling skin thermal pain sensation: role of non-Fourier thermal behavior in transduction process of nociceptor. Comput. Biol. Med. 40:478–486, 2010.

    Article  CAS  PubMed  Google Scholar 

  62. Xu, F., and T. Lu. Chapter 3—skin bioheat transfer and skin thermal damage. In: Introduction to Skin Biothermomechanics and Thermal Pain. Berlin: Springer, pp. 23–68, 2011. https://doi.org/10.1007/978-3-642-13202-5.

  63. Xu, F., and T. Lu. Chapter 1—Introduction. In: Introduction to Skin Biothermomechanics and Thermal Pain, pp. 1–5, 2011.

  64. Xu, F., and T. Lu. Chapter 2—skin structure and skin blood flow. In: Introduction to Skin Biothermomechanics and Thermal Pain. Berlin: Springer, pp. 7–19, 2011. https://doi.org/10.1007/978-3-642-13202-5.

  65. Xu, F., and T. Lu. Chapter 9—analysis of skin biothermomechanics. In: Introduction to Skin Biothermomechanics and Thermal Pain, pp. 221–266, 2011.

  66. Xu, F., T. J. Lu, and K. A. Seffen. Biothermomechanics of skin tissues. J. Mech. Phys. Solids 56:1852–1884, 2008.

    Article  CAS  Google Scholar 

  67. Xu, F., P. F. Wang, M. Lin, T. J. Lu, and E. Y. K. Ng. Quantification and the underlying mechanism of skin thermal damage: a review. J. Mech. Med. Biol. 10:373–400, 2010.

    Article  Google Scholar 

  68. Xu, F., T. Wen, T. J. Lu, and K. A. Seffen. Modeling of nociceptor transduction in skin thermal pain sensation. J. Biomech. Eng. 130:1–13, 2008.

    Article  CAS  Google Scholar 

  69. Zolfaghari, A., and M. Maerefat. 9. Bioheat transfer. In: Developments in Heat Transfer, edited by M. A. D. S. Bernardes. InTech: Rijeka, 2011, pp. 153–170.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Portuguese Foundation for Science and Technology (FCT) for the support given through the projects POCI-01-0145-FEDER-030498 (FunImp) and UID/EEA/04436/2019.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Silva.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Example of search strategy for the PubMed Database

Search

Search terms

Results

1

Human

18,503,540

2

Skin

769,877

3

“Living tissue”

1510

4

“Soft tissue”

113,367

5

“Biological tissue”

3051

6

2 OR 3 OR 4 OR 5

870,089

7

Heat*

311,438

8

Cold

172,889

9

Ice

33,393

10

Hot

174,764

11

Thermal

183,251

12

Hyperthermia

235,847

13

Hypothermia

44,330

14

Bioheat

552

15

Bio-heat

225

16

7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15

978,119

17

Transfer

481,387

18

Flux

74,578

19

Flow

779,107

20

Exchange

307,550

21

17 OR 18 OR 19 OR 20

1,572,361

22

Therapy

9,137,532

23

Cryotherapy

29,655

24

Thermotherapy

37,633

25

22 OR 23 OR 24

9,142,371

26

1 AND 6 AND 16 AND 21 AND 25

1647

Appendix 2

Methodological quality assessment results obtained from the selected studies

First author, year

Question

Score (%)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Anvari (1998)2

2

2

1

2

2

2

1

2

2

2

1

2

2

0

0

2

78.1

Baldwin (2012)3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

87.5

Huang (2013)21

2

2

2

2

2

2

1

2

2

2

0

1

2

0

0

2

75.0

Janssen (2005)24

2

2

2

2

2

1

0

1

2

2

1

1

2

0

1

2

71.9

Liu (2012)29

1

2

1

2

1

1

1

2

1

1

1

2

2

1

2

65.6

Liu (2012)28

1

2

1

2

2

1

1

2

1

1

1

2

2

1

2

68.8

Maruyama (2011)30

2

2

1

2

1

2

1

1

1

1

0

2

2

0

0

2

62.5

Ng (2002)37

2

1

2

0

1

1

1

2

0

2

2

0

0

2

50.0

Van de Sompel (2009)59

2

2

1

2

2

2

1

2

0

2

1

0

0

1

56.3

Xu (2010)61

2

2

2

2

2

2

2

2

2

1

2

2

2

2

84.4

Average

1.8

1.9

1.5

1.8

1.7

1.6

0.6

1.3

1.7

1.7

0.8

1.5

1.9

0.8

0.8

1.9

1.5/70.3

  1. Q1: Are the research objectives clearly stated?, Q2: Is the scientific context clearly explained?, Q3: Is the bioheat transfer model adequately described?, Q4: Are the values of the utilized parameters clearly stated?, Q5: Are the modelling conditions clearly described?, Q6: Is the model for results estimation adequately described?, Q7: Were participant characteristics adequately described?, Q8: Were temperature application, equipment design and set up clearly defined?, Q9: Was the evaluation strategy appropriately justified?, Q10: Were the analytical methods clearly described?, Q11: Was the validation procedure clearly described?, Q12: Were the direct results easily interpretable?, Q13: Were the main outcomes clearly stated and supported by the results?, Q14: Were the limitations of the study clearly described?, Q15: Were key findings supported by other literature?, Q16: Were conclusions drawn from the study clearly stated? (Note that questions assigned with “–“ do not include experimental procedures and/or do not include patients in the study’s experimental setup)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M., Freitas, B., Andrade, R. et al. Computational Modelling of the Bioheat Transfer Process in Human Skin Subjected to Direct Heating and/or Cooling Sources: A Systematic Review. Ann Biomed Eng 48, 1616–1639 (2020). https://doi.org/10.1007/s10439-020-02515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02515-y

Keywords

Navigation