Skip to main content
Log in

Residual Stress Change in Thermal Barrier Coating Due to Thermal Exposure Evaluated by Curvature Method

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) are used to protect the hot sections of gas turbine and jet engines. A TBC system comprises of a substrate, bond coat (BC), and TBC top coat (TC). The residual stress development mechanism by high temperature exposure in TBC is important in designing a high-performance TBC. However, quantitative studies of the stress change and its modeling are few because of its difficulty. The objective of this study is to reveal the changing mechanism of coating stress under high temperature exposure. For this purpose, we applied a three-layered beam model to evaluate the TBC’s residual stress using the curvature change. Time-dependent residual stresses in the TC and BC thermally exposed at 600-1000 °C were evaluated by the curvature method. Subsequently, we investigated the stress-generating mechanism of the coatings by using a finite element analytical (FEA) model that reproduces the measured curvatures. Our experimental result revealed that the residual stress in the BC changed from tensile to compressive by thermal exposure. However, thermal exposure had an insignificant effect on the residual stress in the TC. These changes in coating stress, including temperature and time dependency, were consistently explained by stress relaxation in the BC using the FEA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  CAS  Google Scholar 

  2. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  CAS  Google Scholar 

  3. J. Gibmeier, H.C. Back, M. Mutter, F. Vollert, J.R. Kornmeier, R. Mücke, and R. Vaßen, Study of Stability of Microstructure and Residual Strain after Thermal Loading of Plasma Sprayed YSZ by Through Surface Neutron Scanning, Physica B Condens. Matter, 2018, 551(15), p 69-78

    Article  CAS  Google Scholar 

  4. Q. Chen, W.G. Mao, Y.C. Zhou, and C. Lu, Effect of Young’s Modulus Evolution on Residual Stress Measurement of Thermal Barrier Coatings by X-Ray Diffraction, Appl. Surf. Sci., 2010, 256, p 7311-7315

    Article  CAS  Google Scholar 

  5. P. Jiang, X. Fan, Y. Sun, H. Wang, L. Su, and T. Wang, Thermal-Cycle Dependent Residual Stress within the Crack-Susceptible Zone in Thermal Barrier Coating System, J. Am. Ceram. Soc., 2018, 101, p 4256-4261

    Article  CAS  Google Scholar 

  6. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part1: Planar Geometry, Thin Solid Films, 1997, 306, p 23-33

    Article  CAS  Google Scholar 

  7. J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings Part 1: Apparatus and Analysis, Acta Mater., 2003, 51, p 863-872

    Article  CAS  Google Scholar 

  8. S. Kuroda, T. Fukushima, and S. Kitahara, Simultaneous Measurement of Coating Thickness and Deposition Stress during Thermal Spraying, Thin Solid Films, 1988, 164, p 157-163

    Article  Google Scholar 

  9. T. Hayase, H. Waki, Y. Hasebe, and 2, Evaluation Method of the Residual Stress in Thermal Barrier Coating System Based on the Curvature of the Three-Layered Specimen, J. Soc. Mat. Sci. Jpn., 2017, 66(2), p 150-157 (in Japanese)

    Article  CAS  Google Scholar 

  10. D.J. Greving, E.F. Rybicki, and J.R. Shadley, Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method, J. Therm. Spray Technol., 1994, 3(4), p 379-388

    Article  CAS  Google Scholar 

  11. Y. Yamazaki, H. Fukanuma, and N. Ohno, Effect of Interfacial Roughness of Bond Coat on the Residual Adhesion Strength of a Plasma Sprayed TBC System after Thermal Cycle Fatigue, Trans. Jpn. Soc. Mech. Eng. A, 2010, 76(767), p 831-838

    Article  Google Scholar 

  12. M. Arai and K. Kishimoto, Influence of High-Temperature Exposure on Interfacial Fracture Toughness of Thermal Barrier Coating, J. Solid Mech. Meter. Eng., 2007, 1(8), p 1005-1016

    Article  Google Scholar 

  13. M. Okazaki, S. Yamagishi, Y. Yamazaki, K. Ogawa, H. Waki, and M. Arai, Adhesion Strength of Ceramic Top Coat in Thermal Barrier Coatings Subjected to Thermal Cycles: Effects of Thermal Cycle Testing Method and Environment, Int. J. Fatigue, 2013, 53, p 33-39

    Article  CAS  Google Scholar 

  14. Y. Itoh, M. Saitoh, and M. Miyazaki, Microstructure and Residual Stress of Low-Pressure Plasma-Sprayed MCrAlY Coatings, Trans. Jpn. Soc. Mech. Eng. A, 1995, 61(581), p 87-92 ((in Japanese))

    Article  CAS  Google Scholar 

  15. Y. Chen, X. Zhao, Y. Dang, P. Xiao, N. Curry, N. Markocsan, and P. Nylen, Characterization and Understanding of Residual Stresses in a NiCoCrAlY Bond Coat for Thermal Barrier Coating Application, Acta Mater., 2015, 94, p 1-14

    Article  Google Scholar 

  16. K. Suzuki, K. Tanaka, Y. Akiniwa, M. Kawamura, K. Nishio, and H. Okado, In-Situ Stress Measurement of Bond Coatings at High Temperature by High-Energy Synchrotron X-Rays, J. Soc. Mater. Sci. Jpn., 2003, 52(7), p 756-763 (in Japanese)

    Article  Google Scholar 

  17. K. Suzuki, S. Machiya, K. Tanaka, and Y. Sakaida, X-Ray Study on Deformation Characteristics of Thermal Barrier Coating Films, Trans. Jpn. Soc. Mech. Eng. A, 2001, 67(660), p 1325-1331 ((in Japanese))

    Article  CAS  Google Scholar 

  18. K. Suzuki, T. Kubo, K. Tanaka, and Y. Akiniwa, Analysis on Residual Stress Distribution in Oxidized Thermal Barrier Coatings, J. Soc. Mater. Sci. Jpn., 2005, 54(7), p 679-684

    Article  CAS  Google Scholar 

  19. V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, and D. Stöver, Analysis of Residual Stress in Thermal Barrier Coatings, J. Mater. Process. Technol., 1999, 92–93, p 209-216

    Article  Google Scholar 

  20. C.M. Weyant, J. Almer, and K.T. Faber, Through-Thickness Determination of Phase Composition and Residual Stresses in Thermal Barrier Coatings Using High-Energy X-Rays, Acta Mater., 2010, 58, p 943-951

    Article  CAS  Google Scholar 

  21. L. Yang, F. Yang, Y. Long, Y. Zhao, X. Xiong, X. Zhao, and P. Xiao, Evolution of Residual Stress in Air Plasma Sprayed Yttria Stabilized Zirconia Thermal Barrier Coatings after Isothermal Treatment, Surf. Coat. Technol., 2014, 251, p 98-105

    Article  CAS  Google Scholar 

  22. K. Suzuki and T. Shobu, Internal Stress in EB-PVD Thermal Barrier Coatings under Thermal Cycle, J. Soc. Mater. Sci. Jpn., 2009, 58(7), p 562-567 (in Japanese)

    Article  CAS  Google Scholar 

  23. F. Wang, Y. Zhang, and H. Wang, Residual Stress and Damage Evolution in TBCs by Optical Method, Key Eng. Mater., 2006, 324–325, p 1047-1050

    Article  Google Scholar 

  24. M. Arai, Coating Stresses in Thermal Barrier Coatings by an In-situ Curvature Monitoring Technique, J. Solid Mech. Meter. Eng., 2008, 2(9), p 1207-1219

    Article  Google Scholar 

  25. M. Arai, Mechanistic Study on the Degradation of Thermal Barrier Coatings Induced by Volcanic Ash Deposition, J. Therm. Spray Technol., 2017, 26, p 1207-1221

    Article  CAS  Google Scholar 

  26. G.G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc. Lond. Ser. A, 1909, 82, p 172-175

    Article  CAS  Google Scholar 

  27. A. Brenner and S. Senderoff, Calculation of Stress in Electrodeposits from the Curvature of a Plated Strip, J. Res. Nat. Bur. Stand., 1949, 42, p 105-123

    Article  CAS  Google Scholar 

  28. T.W. Clyne, Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding, Key Eng. Mater., 1996, 116–117, p 307-330

    Google Scholar 

  29. J. Zhu, H. Xie, Z. Hu, P. Chen, and Q. Zhang, Residual Stress in Thermal Spray Coatings Measured by Curvature Based on 3D Digital Image Correlation Technique, Surf. Coat. Technol., 2011, 206, p 1396-1402

    Article  CAS  Google Scholar 

  30. T. Hayase and H. Waki, Measurement of Young’s Modulus and Poisson’s Ratio of Thermal Barrier Coating Based on Bending of Three-Layered Plate, J. Therm. Spray Technol., 2018, 27(5), p 983-998

    Article  CAS  Google Scholar 

  31. T. Hayase, H. Waki, and K. Adachi, Effect of Heat Treatment on Young’s Modulus and Poisson’s Ratio of Thermal Barrier Coating Studied by Bending of Three-Layered Specimen. J. Soc. Mater. Sci. Jpn. 69, (2020) (in press)

  32. K. Tanaka, X-Ray Stress Measurement by the Cos α Method Using Two-Dimensional Detector Part 1: Fundamentals of Measurements, J. Soc. Mater. Sci. Jpn., 2017, 66(7), p 470-478 (in Japanese)

    Article  CAS  Google Scholar 

  33. A.A. Wareszczak, J.G. Hemrick, T.P. Kirkland, and J.A. Haynes, Stress Relaxation of MCrAlY Bond Coat alloys as a Function of Temperature and Strain, in The International Gas Turbine and Aeroengine Congress and Exhibition, June 2–5 (Stockholm), 98-GT-403 (1998)

  34. H. Chen, T.H. Hyde, K.T. Voisey, and D.G. McCartney, Application of Small Punch Creep Testing to a Thermally Sprayed CoNiCrAlY Bond Coat, Mater. Sci. Eng., A, 2013, 585, p 205-213

    Article  CAS  Google Scholar 

  35. R. John, D.J. Buchanan, M.J. Caton, and S.K. Jha, Stability of Shot Peen Residual Stresses in IN 100 Subjected to Creep and Fatigue Loading, Procedia Eng., 2010, 2, p 1887-1893

    Article  Google Scholar 

  36. L. Yang, Z. Zou, Z. Kou, Y. Chen, G. Zhao, X. Zhao, F. Guo, and P. Xiao, High Temperature Stress and Its Influence on Surface Rumpling in NiCoCrAlY Bond Coat, Acta Mater., 2017, 139, p 122-0137

    Article  CAS  Google Scholar 

  37. M. Arai, U. Iwata, T. Suidzu, and K. Tani, Functional Evaluations for a Vertical-Crack Induced Thermal Barrier Coating System, J. Soc. Mater. Sci. Jpn., 2004, 53(9), p 1024-1029 ((in Japanese))

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. T. Kuwashima (Iwate Industrial Research Institute) for preparation of the specimens, and Pulstec Industrial Co., Ltd., for XRD stress measurement. This research was supported by JSPS KAKENHI Grant Number JP17K06039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Waki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on Advanced Residual Stress Analysis in Thermal Spray and Cold Spray Processes. This issue was organized by Dr. Vladimir Luzin, Australian Centre for Neutron Scattering; Dr. Seiji Kuroda, National Institute of Materials Science; Dr. Shuo Yin, Trinity College Dublin; and Dr. Andrew Ang, Swinburne University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayase, T., Waki, H. & Adachi, K. Residual Stress Change in Thermal Barrier Coating Due to Thermal Exposure Evaluated by Curvature Method. J Therm Spray Tech 29, 1300–1312 (2020). https://doi.org/10.1007/s11666-020-01032-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01032-7

Keywords

Navigation