Skip to main content
Log in

Microstructural Characterization of HVOF-Sprayed Ni on Polished and Oxidized Stainless Steel Substrates

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the present study, microstructural analysis was carried out to investigate the effect of substrate surface chemistry on splat formation. Ni powder was sprayed onto stainless steel substrates exhibiting two different surface conditions (polished and oxidized) by high-velocity oxy-fuel (HVOF) thermal spray. X-ray photoelectron spectroscopy (XPS) was employed to investigate the chemical state of the surfaces which indicated the presence of the adsorbates on the oxidized substrate. Single splats of different morphologies from both samples were examined using a range of characterization techniques including scanning electron microscopy (SEM), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDS) interfaced to both SEM and TEM. This provided information on the particle solidification behavior and splat formation mechanism following impact on substrates with distinct surface conditions. The results showed the effect of oxidized surface adsorbates on splat morphology, pore formation and splat–substrate interactions. These microstructural findings, aided by theoretical models, revealed that a mixture of mechanical and metallurgical bonds exists between the splats and both substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Hoboken, 2008

    Google Scholar 

  2. J. Zhang and Y.-G. Jung, Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications, Springer, Berlin, 2018

    Google Scholar 

  3. X. Luo, G.M. Smith, and S. Sampath, On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminates-Part I: High Velocity Thermal Spray Coatings, J. Therm. Spray Technol., 2018, 27(3), p 296-307

    CAS  Google Scholar 

  4. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    CAS  Google Scholar 

  5. J. Henao, A. Concustell, S. Dosta, G. Bolelli, I. Cano, L. Lusvarghi, and J. Guilemany, Deposition Mechanisms of Metallic Glass Particles by Cold Gas Spraying, Acta Mater., 2017, 125, p 327-339

    CAS  Google Scholar 

  6. S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold Spraying: From Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2015, 268, p 77-84

    CAS  Google Scholar 

  7. S. Brossard, P. Munroe, and M. Hyland, Microstructural Study of Splat Formation for HVOF Sprayed NiCr on Pre-Treated Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(5), p 1001-1012

    CAS  Google Scholar 

  8. P. Fauchais, A. Vardelle, M. Vardelle, and M. Fukumoto, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    CAS  Google Scholar 

  9. W. Trompetter, M. Hyland, D. McGrouther, P. Munroe, and A. Markwitz, Effect of Substrate Hardness on Splat Morphology in High-Velocity Thermal Spray Coatings, J. Therm. Spray Technol., 2006, 15(4), p 663-669

    CAS  Google Scholar 

  10. M. Fukumoto, Relationship Between Particle’s Splat Pattern and Coating Adhesive Strength of HVOF Sprayed Cu-Alloy, J. Jpn. Therm. Spray Soc., 1995, 32, p 149-156

    CAS  Google Scholar 

  11. M. Fukumoto, M. Shiiba, H. Kaji, and T. Yasui, Three-Dimensional Transition Map of Flattening Behavior in the Thermal Spray Process, Pure Appl. Chem., 2005, 77(2), p 429-442

    CAS  Google Scholar 

  12. M. Fukumoto, Y. Tanaka, and E. Nishioka, Flattening Problem of Thermal Sprayed Particles, Mater. Sci. Forum, 2004, 449-452, p 1309-1312

    CAS  Google Scholar 

  13. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    CAS  Google Scholar 

  14. J. Wang, C.-J. Li, G.-J. Yang, and C.-X. Li, Effect of Oxidation on the Bonding Formation of Plasma-Sprayed Stainless Steel Splats Onto Stainless Steel Substrate, J. Therm. Spray Technol., 2017, 26(1-2), p 47-59

    CAS  Google Scholar 

  15. M. Fukumoto, I. Ohgitani, and T. Yasui, Effect of Substrate Surface Change on Flattening Behaviour of Thermal Sprayed Particles, Mater. Trans., 2004, 45(6), p 1869-1873

    CAS  Google Scholar 

  16. C.-J. Li and J.-L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2004, 184(1), p 13-23

    CAS  Google Scholar 

  17. A. McDonald, S. Chandra, M. Lamontagne, and C. Moreau, Photographing Impact of Plasma-Sprayed Particles on Metal Substrates, J. Therm. Spray Technol., 2006, 15(4), p 708-716

    CAS  Google Scholar 

  18. M. Fukumoto, H. Nagai, and T. Yasui, Influence of Surface Character Change of Substrate Due to Heating on Flattening Behavior of Thermal Sprayed Particles, J. Therm. Spray Technol., 2006, 15(4), p 759-764

    CAS  Google Scholar 

  19. A. McDonald, C. Moreau, and S. Chandra, Effect of Substrate Oxidation on Spreading of Plasma-Sprayed Nickel on Stainless Steel, Surf. Coat. Technol., 2007, 202(1), p 23-33

    CAS  Google Scholar 

  20. S. Al-Mutairi, M. Hashmi, B. Yilbas, and J. Stokes, Microstructural Characterization of HVOF/Plasma Thermal Spray of Micro/Nano WC-12% Co Powders, Surf. Coat. Technol., 2015, 264, p 175-186

    CAS  Google Scholar 

  21. B. Song, Z. Pala, K. Voisey, and T. Hussain, Gas and Liquid-Fuelled HVOF Spraying of Ni50Cr Coating: Microstructure and High Temperature Oxidation, Surf. Coat. Technol., 2017, 318, p 224-232

    CAS  Google Scholar 

  22. J. Cabral Miramontes, G.K. Pedraza Basulto, C. Gaona Tiburcio, P.D.C. Zambrano Robledo, C.A. Poblano Salas, and F. Almeraya Calderón, Coatings Characterization of Ni-Based Alloy Applied by HVOF, Aircr. Eng. Aerosp. Technol., 2018, 90(2), p 336-343

    Google Scholar 

  23. S. Saladi, P. Ramana, and P.B. Tailor, Evaluation of Microstructural Features of HVOF Sprayed Ni-20Al Coatings, Trans. Indian Inst. Met., 2018, 71(10), p 2387-2394

    CAS  Google Scholar 

  24. S. Tailor, A. Modi, and S. Modi, Thermally Sprayed Thin Copper Coatings by W-HVOF, J. Therm. Spray Technol., 2019, 28(1-2), p 273-282

    Google Scholar 

  25. S. Brossard, P. Munroe, and M. Hyland, Study of the Splat Formation for HVOF Sprayed NiCr on Stainless Steel Substrates and the Effects of Heating and Boiling Pre-Treatments, J. Therm. Spray Technol., 2010, 19(5), p 990-1000

    CAS  Google Scholar 

  26. P.R. Munroe, The Application of Focused Ion Beam Microscopy in the Material Sciences, Mater. Charact., 2009, 60(1), p 2-13

    CAS  Google Scholar 

  27. S.M. Bukhari, New Perovskite Materials for Sensors and Low Temperature Solid Oxide Fuel Cell (LT-SOFC) Applications (Doctoral dissertation), University of Ottawa (Canada), 2011

  28. A. Kumar, T. Shripathi, and P. Srivastava, New Insights Into CoFe/n-Si Interfacial Structure as Probed by X-Ray Photoelectron Spectroscopy, J. Sci.: Adv. Mater. Dev., 2016, 1(3), p 290-294

    Google Scholar 

  29. S. Naik, S. Rai, G. Lodha, and R. Brajpuriya, X-Ray Reflectivity and Photoelectron Spectroscopy Study of Interdiffusion at the Si/Fe Interface, J. Appl. Phys., 2006, 100(1), p 013514

    Google Scholar 

  30. J. Peng, L. Chen, R. Yan, J. Chen, D. Zhu, R. Ding, Q. Wang, and Z. Zhang, Comparative Investigations of Stainless Steel and Molybdenum First Mirrors Cleaning Using Radio Frequency Plasma, Fus. Eng. Des., 2016, 112, p 317-323

    CAS  Google Scholar 

  31. H. Chen, Q. Lu, C. Yi, B. Yang, and S. Qi, Bimetallic Rh-Fe Catalysts for N2O Decomposition: Effects of Surface Structures on Catalytic Activity, Phys. Chem. Chem. Phys., 2018, 20(7), p 5103-5111

    CAS  Google Scholar 

  32. Y. Momose, K. Tsuruya, T. Sakurai, and K. Nakayama, Photoelectron Emission and XPS Studies of Real Iron Surfaces Subjected to Scratching in Air, Water, and Organic Liquids, Surf. Interface Anal., 2016, 48(4), p 202-211

    CAS  Google Scholar 

  33. A.K. Opitz, A. Nenning, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, J. Fleig, and B. Klötzer, Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron (0): An In Situ XPS Study on Perovskite-Type Electrodes, Ang. Chemie Int. Ed., 2015, 54(9), p 2628-2632

    CAS  Google Scholar 

  34. M. Zanouni, E. Denys, M. Derivaz, D. Dentel, M. Diani, C.B. Azzouz, and J.L. Bischoff, Growth of Fe Nanocrystals on LaAlO3 (001) and Epitaxial Relationship Determination by RHEED and XPS, Phys. Status. Solidi. (c), 2014, 11(9-10), p 1393-1396

    CAS  Google Scholar 

  35. L. Niu, X. Liu, X. Liu, Z. Lv, C. Zhang, X. Wen, Y. Yang, Y. Li, and J. Xu, In Situ XRD Study on Promotional Effect of Potassium on Carburization of Spray-dried Precipitated Fe2O3 Catalysts, ChemCatChem, 2017, 9(9), p 1691-1700

    CAS  Google Scholar 

  36. J. Lv, X. Lou, and J. Wu, Defect Dipole-Induced Poling Characteristics and Ferroelectricity of Quenched Bismuth Ferrite-Based Ceramics, J. Mater. Chem. C, 2016, 4(25), p 6140-6151

    CAS  Google Scholar 

  37. P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiró, Y. He, W. Kramer, A.P. Rodríguez, E. Saucedo, and J.R. Galán-Mascarós, Enhanced Photoelectrochemical Water Splitting of Hematite Multilayer Nanowire Photoanodes by Tuning the Surface State Via Bottom-Up Interfacial Engineering, Energy Environ. Sci., 2017, 10(10), p 2124-2136

    CAS  Google Scholar 

  38. A. Gambhire, M. Lande, S. Kalokhe, M. Shirsat, K. Patil, R. Gholap, and B. Arbad, Synthesis and Characterization of High Surface Area CeO2-Doped SnO2 Nanomaterial, Mater. Chem. Phys., 2008, 112(3), p 719-722

    CAS  Google Scholar 

  39. M. Li, G. Xing, L.F.N.A. Qune, G. Xing, T. Wu, C.H.A. Huan, X. Zhang, and T.C. Sum, Tailoring the Charge Carrier Dynamics in ZnO Nanowires: The Role of Surface Hole/Electron Traps, Phys. Chem. Chem. Phys., 2012, 14(9), p 3075-3082

    CAS  Google Scholar 

  40. M.V. Landau, M.L. Kaliya, A. Gutman, L.O. Kogan, M. Herskowitz, and P.F. Van Den Oosterkamp, Oxidative Conversion of LPG to Olefins with Mixed Oxide Catalysts: Surface Chemistry and Reactions Network, Stud. Surf. Sci. Catal., 1997, 110, p 315-326

    CAS  Google Scholar 

  41. J.L.G. Fierro, Metal Oxides: Chemistry and Applications, CRC Press, Boca Raton, 2005

    Google Scholar 

  42. S.T. Oyama, Introduction to the Chemistry of Transition Metal Carbides and Nitrides, The Chemistry of Transition Metal Carbides and Nitridesed, Springer, Berlin, 1996, p 1-27

    Google Scholar 

  43. N.D. Spencer, Tailoring Surfaces: Modifying Surface Composition and Structure for Applications in Tribology, Biology and Catalysis, World Scientific, Singapore, 2011

    Google Scholar 

  44. W. Fan and G.J. Ma, XPS Analysis of Stainless Steel Plant Dust, Adv. Mater. Res., 2013, 634-638, p 3159-3162

    Google Scholar 

  45. R. Cheng, B. Xu, C. Borca, A. Sokolov, C.-S. Yang, L. Yuan, S.-H. Liou, B. Doudin, and P.A. Dowben, Characterization of the Native Cr2O3 Oxide Surface of CrO2, Appl. Phys. Lett., 2001, 79(19), p 3122-3124

    CAS  Google Scholar 

  46. J. Sun, G. Qi, Y. Tan, and C. An, Characterization of Chromate Conversion Film on Tinplate Substrate by XPS and Electrochemistry Methods, Surf. Interface Anal., 2009, 41(6), p 449-452

    CAS  Google Scholar 

  47. A. Tran, M. Hyland, K. Shinoda, and S. Sampath, Influence of Substrate Surface Conditions on the Deposition and Spreading of Molten Droplets, Thin Solid Films, 2011, 519(8), p 2445-2456

    CAS  Google Scholar 

  48. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407

    CAS  Google Scholar 

  49. G.-C. Ji, X. Chen, H.-T. Wang, X.-B. Bai, and Z.-X. Dong, Deformation Behaviors of Cold-Sprayed WC-Co Particles, J. Therm. Spray Technol., 2015, 24(6), p 1100-1110

    CAS  Google Scholar 

  50. P.C. King, S. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection Of Cold-Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626

    CAS  Google Scholar 

  51. C.-J. Li and J.-L. Li, Transient Contact Pressure During Flattening of Thermal Spray Droplet and Its Effect on Splat Formation, J. Therm. Spray Technol., 2004, 13(2), p 229-238

    Google Scholar 

  52. W.D. Callister and D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th ed., Wiley, Hoboken, 2011

    Google Scholar 

  53. K. Hirano, M. Cohen, and B. Averbach, Diffusion of Nickel into Iron, Acta Metall., 1961, 9(5), p 440-445

    CAS  Google Scholar 

  54. E. Yanardağ, Effect of Spherodizing on Machinability Characteristics and Microstructure of Medium Carbon Steels (Doctoral dissertation), Middle East Technical University, 2004

  55. R. Dykhuizen, M. Smith, D. Gilmore, R. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564

    CAS  Google Scholar 

  56. R. Matthews, R. Knusten, J. Westraadt, and T. Couvant, Intergranular Oxidation of 316L Stainless Steel in the PWR Primary Water Environment, Corros. Sci., 2017, 125, p 175-183

    CAS  Google Scholar 

  57. F. Freund, Retention of Hydroxyl Groups on Magnesium Oxide, J. Am. Ceram. Soc., 1967, 50(9), p 493-494

    CAS  Google Scholar 

  58. N.D.A. Manaf, K. Fukuda, Z.A. Subhi, and M.F.M. Radzi, Influences of Surface Roughness on the Water Adsorption on Austenitic Stainless Steel, Tribol. Int., 2019, 136, p 75-81

    CAS  Google Scholar 

  59. H. Zhang, H. Xiong, L. Zheng, A. Vaidya, L. Li, and S. Sampath, Melting Behavior of In-Flight Particles and Its Effects on Splat Morphology in Plasma Spraying, Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. Heat Transfer, Vol 7, November 17-22, 2002 (New Orleans, LA), ASME, p 309-316

  60. A. Vaidya, G. Bancke, S. Sampath, and H. Herman, Influence of Process Variables on the Plasma-Sprayed Coatings: An Integrated Study, Thermal Spray 2001: New Surfaces for a New Millennium, ASM International, Singapore, May 28-30, 2001, p 1345-1349

  61. T. Iida and I.L. Roderick, The Physical Properties of Liquid Metals, Clarendon Press; Oxford University Press, Oxford, 1988

    Google Scholar 

  62. T. Nishi, H. Shibata, Y. Waseda, and H. Ohta, Thermal Conductivities of Molten Iron, Cobalt, and Nickel by Laser Flash Method, Metall. Mater. Trans. A, 2003, 34(12), p 2801-2807

    Google Scholar 

  63. F.P. Incropera and F.P. Incropera, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, Hoboken, 2007

    Google Scholar 

  64. M. Fukumoto, E. Nishioka, and T. Nishiyama, New Criterion for Splashing in Flattening of Thermal Sprayed Particles Onto Flat Substrate Surface, Surf. Coat. Technol., 2002, 161(2-3), p 103-110

    CAS  Google Scholar 

  65. H. Li, S. Costil, H.-L. Liao, C.-J. Li, M. Planche, and C. Coddet, Effects of Surface Conditions on the Flattening Behavior of Plasma Sprayed Cu Splats, Surf. Coat. Technol., 2006, 200(18-19), p 5435-5446

    CAS  Google Scholar 

  66. C. Escure, Visualization of the Impact of Drops on a Substrate in Plasma Spraying, in Proceedings of the 2nd International Thermal Spray Conference, 2001, p 805-812

  67. L. Bianchi, A. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, Splat Formation and Cooling of Plasma-Sprayed Zirconia, Thin Solid Films, 1997, 305(1-2), p 35-47

    CAS  Google Scholar 

  68. V. Sobolev, J. Guilemany, and A. Martin, Influence of Surface Roughness on the Flattening of Powder Particles During Thermal Spraying, J. Therm. Spray Technol., 1996, 5(2), p 207-214

    CAS  Google Scholar 

  69. Z. Feng, M. Domaszewski, G. Montavon, and C. Coddet, Finite Element Analysis of Effect of Substrate Surface Roughness on Liquid Droplet Impact and Flattening Process, J. Therm. Spray Technol., 2002, 11(1), p 62-68

    CAS  Google Scholar 

  70. G. Sundararajan, N.M. Chavan, and S. Kumar, The Elastic Modulus of Cold Spray Coatings: Influence of Inter-Splat Boundary Cracking, J. Therm. Spray Technol., 2013, 22(8), p 1348-1357

    Google Scholar 

  71. W.R. Wilcox and V.H. Kuo, Gas Bubble Nucleation During Crystallization, J. Cryst. Growth, 1973, 19(4), p 221-228

    CAS  Google Scholar 

  72. L. Liu, H. Yan, and G. Zhao, Experimental Studies on the Shape and Motion of Air Bubbles in Viscous Liquids, Exp. Therm. Fluid Sci., 2015, 62, p 109-121

    CAS  Google Scholar 

  73. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin, A Method of “Cold” Gas-Dynamic Deposition, Sov. Phys. Dokl., 1990, 35(12), p 1047-1049

    Google Scholar 

  74. W. Pfeiler, Alloy Physics: A Comprehensive Reference, Wiley, Hoboken, 2008, p 269

    Google Scholar 

  75. Z. Arabgol, M.V. Vidaller, H. Assadi, F. Gärtner, and T. Klassen, Influence of Thermal Properties and Temperature of Substrate on the Quality of Cold-Sprayed Deposits, Acta Mater., 2017, 127, p 287-301

    CAS  Google Scholar 

  76. H.D. Baehr, N.J. Park, and K. Stephan, Heat and Mass Transfer, Springer, Berlin, 2013, p 155-156

    Google Scholar 

  77. S. Brossard, Microstructural Analysis of Thermal Spray Coatings by Electron Microscopy (Doctoral dissertation), University of New South Wales, 2010

Download references

Acknowledgment

The authors would like to acknowledge the financial support from UNSW for an University International Postgraduate Award (UIPA). The authors also acknowledge the technical support provided by Dr. Bill Gong of SSEAU, UNSW, along with Sean Lim, Yin Yao and the other staff at the EMU, UNSW for their help in the experiments described in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musharaf Abbas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M., Smith, G.M. & Munroe, P.R. Microstructural Characterization of HVOF-Sprayed Ni on Polished and Oxidized Stainless Steel Substrates. J Therm Spray Tech 29, 1093–1110 (2020). https://doi.org/10.1007/s11666-020-01031-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01031-8

Keywords

Navigation