Skip to main content
Log in

New Ultra-Fast Sub-Terahertz Linear Scanner for Postal Security Screening

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

To meet increasingly demanding technological needs in modern security and industrial applications involving rapid close-range screening, we have developed a 100-GHz linear scanner. Having incorporated a novel approach in terahertz sensing and an advanced IMPATT-diode signal generating technique, the proposed system offers an efficient non-destructive testing (NDT) solution that is absolutely safe, fast, highly portable, and cost-effective. The test results demonstrate outstanding capability of the scanner to provide continuous, high-throughput security screening of mail. The system can perform real-time imaging with effective resolution approaching 5 mm at conveyor speeds of up to 15 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. X.-C. Zhang, J. Xu, Introduction to THz Wave Photonics, Springer, 2010.

  2. S. Wietzke, et al.,Industrial applications of THz systems, Proceedings of SPIE - The International Society for Optical Engineering, 738506, (2009), https://doi.org/10.1117/12.840991.

  3. Hua Zhong et al., Nondestructive defect identification with terahertz time-of-flight tomography, IEEE Sensors Journal, 5(2), 203–208 (2005), https://doi.org/10.1109/JSEN.2004.841341.

  4. I. Amenabar, F. Lopez and A. Mendikute, In Introductory Review to THz Non-Destructive Testing of Composite Mater, Journal of Infrared, Millimeter, and Terahertz Waves, 34(2), 152–169 (2013), https://doi.org/10.1007/s10762-012-9949-z.

  5. D. M. Sheen, D. L. McMakin, and T. E. Hall, Three-dimensional millimeter-wave imaging for concealed weapon detection, IEEE Transactions on Microwave Theory and Techniques, 49(9), 1581–1592 (2001), https://doi.org/10.1109/22.942570.

  6. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express, 11 (20), 2549–2554 (2003), https://doi.org/10.1364/OE.11.002549.

  7. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, Detection and identification of explosives using terahertz pulsed spectroscopic imaging, Appl. Phys. Lett. 86, 241116, (2005), https://doi.org/10.1063/1.1946192.

  8. M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe and K. Sakai, Development of a THz spectroscopic imaging system, Physics in Medicine and Biology, 47, 3749–3753 (2002).

  9. D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, W. P. Winfree and E. I. Madaras, Time domain terahertz detection of flaws within space shuttle sprayed on foam insulation, Proceedings of the Conference on Lasers and Electro-Optics 2004, San Francisco, USA, (2004).

  10. C. Baker, W. R. Tribe, T. Lo, B. E. Cole, S. Chandler and M. C. Kemp, People screening using terahertz technology, Proc. SPIE 5790, Terahertz for Military and Security Applications III, (2005).

  11. D. M. Mittleman, Twenty years of terahertz imaging, Opt. Express, 26, 9417–9431 (2018), https://doi.org/10.1364/OE.26.009417.

  12. L. Liu, S. M. Rahman, Z. Jiang, W. Li and P. Fay, Advanced Terahertz Sensing and Imaging Systems Based on Integrated III-V Interband Tunneling Devices, Proceedings of the IEEE, 105, 1020–1034 (2017), https://doi.org/10.1109/JPROC.2016.2636245.

  13. P. Hillger, J. Grzyb, R. Jain and U. R. Pfeiffer, Terahertz Imaging and Sensing Applications With Silicon-Based Technologies, IEEE Transactions on Terahertz Science and Technology, 9, 1–19 (2019), https://doi.org/10.1109/TTHZ.2018.2884852.

  14. W. L. Chan, J. Deibel and D. M. Mittleman, Imaging with terahertz radiation, Reports on Progress in Physics, 70, 1325–1379 (2007), https://doi.org/10.1088/0034-4885/70/8/R02.

  15. P. U. Jepsen, D. G. Cooke and M. Koch, Terahertz spectroscopy and imaging – Modern techniques and applications, Laser Photonics Rev, 5, 124–166 (2011), https://doi.org/10.1002/lpor.201000011.

  16. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. M. Meziani and T. Otsuji, Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications, Journal of Infrared, Millimeter, and Terahertz Waves, 30, 1319–1337 (2009), https://doi.org/10.1007/s10762-009-9564-9.

  17. S. Ruan, J. Yang, and M. Zhang, Real-time terahertz imaging using a 1.63 THz optically-pumped terahertz laser and a pyroelectric camera, Proc. SPIE, 28th Int. Congr. High-Speed Imaging Photonics, 7126, 1261U–1–6 (2009), https://doi.org/10.1117/12.819831.

  18. J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats and P. Mounaix, Review of Terahertz Tomography Techniques, Journal of Infrared, Millimeter, and Terahertz Waves, 35, 382–411 (2014), https://doi.org/10.1007/s10762-014-0057-0.

  19. H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, and K. Kawase, Noninvasive Mail Inspection System with Terahertz Radiation, Applied Spectroscopy, 63, 81–86 (2009), https://doi.org/10.1366/000370209787169713.

  20. Mike Kemp Screening mail for powders using terahertz technology, Proc. SPIE 8189, Optics and Photonics for Counterterrorism and Crime Fighting VII; Optical Materials in Defence Systems Technology VIII; and Quantum-Physics-based Information Security, 81890J (5 October 2011).

  21. K. Kawase, R. Yamzaki, K. Imayama and K. Murate, Evolved injection seeded THz-wave spectrometer for mail inspection, 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015, pp. 1–2, https://doi.org/10.1109/IRMMW-THz.2015.7327583.

  22. K. Murate, and K. Kawase, Perspective: Terahertz wave parametric generator and its applications, J. Appl. Phys., 124, 160901 (2018), https://doi.org/10.1063/1.5050079.

  23. A. Dobroiu, Y. Sasaki, T. Shibuya, C. Otani and K. Kawase, THz-Wave Spectroscopy Applied to the Detection of Illicit Drugs in Mail, Proceedings of the IEEE, 95, 1566–1575 (2007), https://doi.org/10.1109/JPROC.2007.898840.

  24. R. Beigang, Industrial Applications of Terahertz Technology: from Layer Thickness Measurements to Mail Screening, Imaging and Applied Optics 2014, paper AW1A.2, https://doi.org/10.1364/AIO.2014.AW1A.2.

  25. K. Baaske, M. Salhi, F. Rutz, T. Hasek, R. Wilk, H. Richter and M. Koch Mail inspection using THz imaging: a comparison of three different systems, Proc. SPIE 6212, Terahertz for Military and Security Applications IV, 62120U (2006).

  26. D. H. Barker, D. T. Hodges, and T. S. Hartwick Far Infrared Imagery, Proc. SPIE 0067, Long-Wavelength Infrared (1975).

  27. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, Compact continuous-wave subterahertz system for inspection applications, Applied Physics Letters, 86, 054105 (2005).

  28. I. S. Gregory, W. R. Tribea, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, M. Missous Continuous-wave terahertz system with a 60 dB dynamic range, Appl. Phys. Lett. 86, 204104 (2005).

  29. T. Loeffler, T. Maya, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos Continuous-wave terahertz imaging with a hybrid system, Appl. Phys. Lett. 90, 091111 (2007).

  30. A. W. M. Lee and Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array, Optical Letters 30, 2563–2565 (2005).

  31. E. Hack, L. Valzania, G. Gaumann, M. Shalaby, C. Hauri, and P. Zolliker, Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging, Sensors, 21, 221, 2016, https://doi.org/10.3390/s16020221.

  32. U. Pfeiffer, and E. Ojefors, A 600-GHz CMOS Focal-Plane Array for Terahertz Imaging Applications, ESSCIRC 2008 - 34th European Solid-State Circuits Conference, Edinburgh, 2008, pp. 110–113, https://doi.org/10.1109/ESSCIRC.2008.4681804.

  33. E. Ojefors, N. Baktash, Y. Zhao, R. A. Hadi, H. Sherry and U. R. Pfeiffer, Terahertz imaging detectors in a 65-nm CMOS SOI technology, 2010 Proceedings of ESSCIRC, Seville, 2010, 486–489, https://doi.org/10.1109/ESSCIRC.2010.5619749.

  34. W. Knap, D. But, N. Dyakonova, D. Coquillat, et al., Terahertz Imaging with GaAs and GaN Plasma Field Effect Transistors Detectors, 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, Lodz, 2016, 74–77, https://doi.org/10.1109/MIXDES.2016.7529703.

  35. J. Suszek et al., 3-D-Printed Flat Optics for THz Linear Scanners, IEEE Transactions on Terahertz Science and Technology, 5, 314-316, (2015), https://doi.org/10.1109/TTHZ.2015.2398313.

  36. V. M. Muravev and I. V. Kukushkin, Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect, Appl. Phys. Lett., 100, 082102, (2012), https://doi.org/10.1063/1.3688049.

  37. V. M. Muravev, V. V. Solov’ev, A. A. Fortunatov, G. E. Tsydynzhapov and I. V. Kukushkin, On the response time of plasmonic terahertz detectors, Journal of Experimental and Theoretical Physics Letters, 103(12), 792–794 (2012), https://doi.org/10.1134/S0021364016120080.

  38. Y. Sasaki, M. Yamashita, A. Dobroiu, T. Shibuya, C. Otani and K. Kawase, Prototype detection system of terahertz wave scattering from powders, International Workshop on Terahertz Technology TeraTec ’05, Osaka, Japan, 235–236 (2005).

Download references

Acknowledgments

The authors would like to recognize Dr. Oleg Khrichenko, a technical writing specialist at TeraSense Group Inc., for his substantial contribution to drafting, language editing, and proofreading of the manuscript.

Funding

The work was supported by the Russian Science Foundation Grant No. 19-72-30003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shchepetilnikov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchepetilnikov, A.V., Gusikhin, P.A., Muravev, V.M. et al. New Ultra-Fast Sub-Terahertz Linear Scanner for Postal Security Screening. J Infrared Milli Terahz Waves 41, 655–664 (2020). https://doi.org/10.1007/s10762-020-00692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00692-4

Keywords

Navigation