Skip to main content

Advertisement

Log in

Enhancing hydrogen storage by metal substitution in MIL-88A metal-organic framework

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

MIL-88A metal-organic framework with the unsaturated Fe metal coordination sites has demonstrated to be a promising material for gas storage and capture. However, the hydrogen storage capacity of MIL-88A has to be improved to meet the practical level at the ambient conditions. In this research, we elucidated the effects of transition metal substitution on the hydrogen storage capability of MIL-88A. The trivalent transition metals including Sc, Ti, V, Cr, Mn, and Ni have been selected to substitute for Fe in MIL-88A. Using the van der Waals dispersion-corrected density functional theory calculations, we explored the most favorable adsorption configurations of the hydrogen molecule in M-MIL-88A (M = Sc, Ti, V, Cr, Mn, Ni). We found that the V-MIL-88A has the strongest binding energy of 17 kJ mol−1 with the hydrogen molecule in the side-on configuration on the metal site. Besides, the grand canonical Monte Carlo simulations showed that the metal substitution greatly influences not only the favorable adsorption configuration and energy but also the hydrogen uptake due to the modification of the H2@MIL-88A interaction. Sc-MIL-88A was found to offer the highest gravimetric H2 uptake compared to the other M-MIL-88A. The value is 5.13 wt% at (cryogenic temperature 77 K, 50 bar) and 0.72 wt% at (room temperature 298 K, 100 bar) for the absolute; 4.63 wt% at (77 K, 10 bar) and 0.29 wt% at (298 K, 100 bar) for the excess capacity. Furthermore, Sc-MIL-88A also exhibited the highest volumetric uptake up to 52 g L−1 at 77 K and 7.1 g L−1 at 298 K for the absolute; 46 g L−1 at 77 K and 2.8 g L−1 at 298 K for the excess loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh, A.K., Yakobson, B.I.: First principles calculations of H-storage in sorption materials. J. Mater. Sci. 47, 7356–7366 (2012). https://doi.org/10.1007/s10853-012-6551-7

    Article  CAS  Google Scholar 

  2. K. Mazloomi, C. Gomes: Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033 (2012)

    Article  CAS  Google Scholar 

  3. Nijem, N., Veyan, J.-F., Kong, L., et al.: Interaction of molecular hydrogen with microporous metal organic framework materials at room temperature. J. Am. Chem. Soc. 132, 1654–1664 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. C. Liu, F. Li, L.P. Ma, H.M. Cheng: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Niaz, S., Manzoor, T., Pandith, A.H.: Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015)

    Article  CAS  Google Scholar 

  6. Huang, A., He, Y., Zhou, Y., et al.: A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 54, 949–973 (2018)

    Article  CAS  Google Scholar 

  7. Xu, J., Liu, J., Li, Z., et al.: Synthesis, structure and properties of Pd@MOF-808. J. Mater. Sci. 54, 12911–12924 (2019)

    Article  CAS  Google Scholar 

  8. Molefe, L.Y., Musyoka, N.M., Ren, J., et al.: Synthesis of porous polymer-based metal-organic frameworks monolithic hybrid composite for hydrogen storage application. J. Mater. Sci. 54, 7078–7086 (2019)

    Article  CAS  Google Scholar 

  9. M.D. Allendorf, Z. Hulvey, T. Gennett, et al: An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ. Sci 11, 2784–2812 (2018)

    Article  CAS  Google Scholar 

  10. T.T.T. Huong, P.N. Thanh, N.T.X. Huynh, D.N. Son: Metal-organic frameworks: state-of-the-art material for gas capture and storage. VNU J. Sci. Math. Phys. 32, 67–85 (2016)

    Article  Google Scholar 

  11. Czaja, A.U., Trukhan, N., Muller, U.: Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Furukawa, H., Ko, N., Go, Y.B., et al.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. O.K. Farha, A. Yazaydın, I. Eryazici, et al: De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Basdogan, Y., Keskin, S.: Simulation and modelling of MOFs for hydrogen storage. CrystEngComm. 17, 261–275 (2014). https://doi.org/10.1039/C4CE01711K

    Article  CAS  Google Scholar 

  15. H.W. Langmi, J. Ren, B. North, et al: Metal-organic frameworks for hydrogen storage hydrogen storage in metal-organic frameworks: a review. Electrochim. Acta 128, 368–392 (2014)

    Article  CAS  Google Scholar 

  16. J. Sculley, D. Yuan, H. Zhou: The current status of hydrogen storage in metal–organic frameworks-updated. Energy Environ. Sci. 4, 2721–2735 (2011)

    Article  CAS  Google Scholar 

  17. Sumida, K., Hill, M.R., Horike, S., et al.: Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J. Am. Chem. Soc. 131, 15120–15121 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. M.T. Kapelewski, T. Runčevski, J.D. Tarver, et al: Record high hydrogen storage capacity in the metal-organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater. 30, 8179–8189 (2018)

    Article  CAS  Google Scholar 

  19. A. Ahmed, S. Seth, J. Purewal, et al: Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-09365-w

    Article  PubMed  PubMed Central  Google Scholar 

  20. Serre, C., Millange, F., Surblé, S., Férey, G.: A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 43, 6286–6289 (2004)

    Article  CAS  Google Scholar 

  21. C. Mellot-Draznieks, C. Serre, S. Surblé, et al: Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J. Am. Chem. Soc. 127, 16273–16278 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Xuan Huynh, N.T., Chihaia, V., Son, D.N.: (2018) Hydrogen storage in MIL-88 series. J. Mater. Sci. https://doi.org/10.1007/s10853-018-3140-4

    Article  Google Scholar 

  23. N.T. Xuan Huynh, O.M. Na, V. Chihaia, D.N. Son: A computational approach towards understanding hydrogen gas adsorption in Co–MIL-88A. RSC Adv. 7, 39583–39593 (2017)

    Article  Google Scholar 

  24. Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005)

    Article  CAS  Google Scholar 

  25. Vitillo, J.G., Regli, L., Chavan, S., et al.: Role of exposed metal sites in hydrogen storage in MOFs. J. Am. Chem. Soc. 130, 8386–8396 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Dion, M., Rydberg, H., Schröder, E., et al.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. T. Thonhauser, V.R. Cooper, S. Li, et al: Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112(1-125112(12 (2007)

    Article  CAS  Google Scholar 

  28. D.C. Langreth, B.I. Lundqvist, S.D. Chakarova-Käck, et al: A density functional for sparse matter. J. Phys. Condens. Matter 21, 084203 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  30. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  31. S. Zuluaga, P. Canepa, K. Tan, et al: Study of van der Waals bonding and interactions in metal organic framework materials. J. Phys. Condens. Matter 26, 133002 (2014). https://doi.org/10.1002/asia.201400031

    Article  CAS  PubMed  Google Scholar 

  32. D.N. Son, T.T.T. Huong, V. Chihaia: Simultaneous adsorption of SO2 and CO2 in an Ni(bdc)(ted)0.5 metal–organic framework. RSC Adv. 1, 38648–38655 (2018)

    Article  Google Scholar 

  33. J. Perdew, J. Chevary, S. Vosko, et al: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  CAS  Google Scholar 

  34. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  35. Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  CAS  Google Scholar 

  36. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  CAS  Google Scholar 

  37. Pack, J.D., Monkhorst, H.J.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  38. Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989)

    Article  CAS  Google Scholar 

  39. Blochl, P.E., Jepsen, O., Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994)

    Article  CAS  Google Scholar 

  40. Tyuterev, V.G., Vast, N.: Murnaghan’s equation of state for the electronic ground state energy. Comput. Mater. Sci. 38, 350–353 (2006)

    Article  CAS  Google Scholar 

  41. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204(7 (2009)

    Google Scholar 

  42. T.A. Manz, D.S. Sholl: Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J. Chem. Theory Comput. 8, 2844–2867 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016)

    Article  CAS  Google Scholar 

  44. Simulations, M.D.: (1992) UFF, a. 2:10024–10035

  45. D. Levesque, A. Gicquel, F.L. Darkrim, S.B. Kayiran: Monte Carlo simulations of hydrogen storage in carbon nanotubes. J. Phys. Condens. Matter 14, 9285–9293 (2002)

    Article  CAS  Google Scholar 

  46. Murnaghan, F.D.: Finite deformation of an elastic solid, 1st edn. Wiley, New York (1951)

    Google Scholar 

  47. A.L. da Rosa, S.M. Lee, E. Penev: The FHIMD toolkit—user’s manual. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (2002)

    Google Scholar 

  48. Timokhin, I., White a, J.P., Lickiss, P.D., et al.: Microporous metal–organic frameworks built from rigid tetrahedral tetrakis(4-tetrazolylphenyl)silane connectors. CrystEngComm. 16, 8094–8097 (2014). https://doi.org/10.1039/c4ce00486h

    Article  CAS  Google Scholar 

  49. M.V. Parkes, D.F. Sava Gallis, J.A. Greathouse, T.M. Nenoff: Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: a combined density functional theory and experimental study. J. Phys. Chem. C 119, 6556–6567 (2015). https://doi.org/10.1021/jp511789g

    Article  CAS  Google Scholar 

  50. Mowat, J.P.S., Seymour, V.R., Griffin, J.M., et al.: A novel structural form of MIL-53 observed for the scandium analogue and its response to temperature variation and CO2 adsorption. Dalt Trans. 41, 3937–3941 (2012). https://doi.org/10.1039/c1dt11729g

    Article  CAS  Google Scholar 

  51. F. Millange, N. Guillou, R.I. Walton, et al: Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. (2008). https://doi.org/10.1039/b809419e

    Article  Google Scholar 

  52. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Article  CAS  Google Scholar 

  53. K. Lee, J.D. Howe, L.C. Lin, et al: Small-molecule adsorption in open-site metal-organic frameworks: a systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015)

    Article  CAS  Google Scholar 

  54. A. Mavrandonakis, D. Vogiatzis, K. Boese, et al: Ab initio study of the adsorption of small molecules on metal-organic frameworks with oxo-centered trimetallic building units: the role of the undercoordinated metal ion. Inorg. Chem. 54, 8251–8263 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim: Hydrogen storage in metal—organic frameworks. Chem. Rev. 112, 782–835 (2012)

    Article  CAS  PubMed  Google Scholar 

  56. Siegel, D., Hardy, B.: HSECoE Team. (2015) Engineering an adsorbent-based hydrogen storage system: What have we learned? https://www.energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.pdf. Accessed 14 Feb, 2020

  57. P. García-Holley, B. Schweitzer, T. Islamoglu, et al: Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions. ACS Energy Lett. 3, 748–754 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.01-2017.04. We acknowledge the usage of the computer time and software granted by the Institute of Physical Chemistry of Romanian Academy, Bucharest (HPC infrastructure developed under the projects Capacities 84 Cp/I of 15.09.2007 and INFRANANOCHEM 19/01.03.2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Ngoc Son.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, N.T.X., Chihaia, V. & Son, D.N. Enhancing hydrogen storage by metal substitution in MIL-88A metal-organic framework. Adsorption 26, 509–519 (2020). https://doi.org/10.1007/s10450-020-00213-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00213-8

Keywords

Navigation