Skip to main content
Log in

Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We propose a method to construct a reduced order model with machine learning for unsteady flows. The present machine-learned reduced order model (ML-ROM) is constructed by combining a convolutional neural network autoencoder (CNN-AE) and a long short-term memory (LSTM), which are trained in a sequential manner. First, the CNN-AE is trained using direct numerical simulation (DNS) data so as to map the high-dimensional flow data into low-dimensional latent space. Then, the LSTM is utilized to establish a temporal prediction system for the low-dimensionalized vectors obtained by CNN-AE. As a test case, we consider flows around a bluff body whose shape is defined using a combination of trigonometric functions with random amplitudes. The present ML-ROMs are trained on a set of 80 bluff body shapes and tested on a different set of 20 bluff body shapes not used for training, with both training and test shapes chosen from the same random distribution. The flow fields are confirmed to be well reproduced by the present ML-ROM in terms of various statistics. We also focus on the influence of two main parameters: (1) the latent vector size in the CNN-AE, and (2) the time step size between the mapped vectors used for the LSTM. The present results show that the ML-ROM works well even for unseen shapes of bluff bodies when these parameters are properly chosen, which implies great potential for the present type of ML-ROM to be applied to more complex flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Taira, K., Brunton, S.L., Dawson, S., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)

    Article  Google Scholar 

  2. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Wave Propagation, pp. 166–178. Nauka, Moscow (1967)

    Google Scholar 

  3. Schmid, P.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bakewell, H.P., Lumley, J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 1880 (1967)

    Article  Google Scholar 

  5. Gómez, F., Blackburn, H.M.: Data-driven approach to design of passive flow control strategies. Phys. Rev. Fluids 2, 021901 (2017)

    Article  Google Scholar 

  6. Alfonsi, G., Primavera, L.: The structure of turbulent boundary layers in the wall region of plane channel flow. Proc. R. Soc. A 463(2078), 593–612 (2007)

    Article  MathSciNet  Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Nature 313, 504–507 (2006)

    MathSciNet  MATH  Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  9. Kutz, N.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)

    Article  Google Scholar 

  10. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2019)

    Article  Google Scholar 

  11. Taira, K., Hemati, M.S., Brunton, S.L., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S.T.M., Yeh, C.-A.: Modal analysis of fluid flows: applications and outlook. AIAA J. 58(3), 998–1022 (2020)

  12. Brenner, M.P., Eldredge, J.D., Freund, J.B.: Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4, 100501 (2019)

    Article  Google Scholar 

  13. Fukami, K., Fukagata, K., Taira, K.: Assessment of supervised machine learning methods for fluid flows. Theor. Comput. Fluid Dyn. (2020). https://doi.org/10.1007/s00162-020-00518-y

    Article  Google Scholar 

  14. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)

    Article  MathSciNet  Google Scholar 

  15. Fukami, K., Fukagata, K., Taira, K.: Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106–120 (2019)

    Article  MathSciNet  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Xiaowei, J., Peng, C., Wen-Li, C., Hui, L.: Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Phys. Fluids 30, 047105 (2018)

    Article  Google Scholar 

  18. Viquerata, J., Hachema, E.: A supervised neural network for drag prediction of arbitrary 2D shapes in low Reynolds number flows, arXiv preprint, arXiv:1907.05090 [physics.comp-ph] (2019)

  19. San, O., Maulik, R.: Extreme learning machine for reduced order modeling of turbulent geophysical flows. Phys. Rev. E 97, 04322 (2018)

    Article  Google Scholar 

  20. Srinivasan, P.A., Guastoni, L., Azizpour, H., Schlatter, P., Vinuesa, R.: Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4, 054603 (2019)

    Article  Google Scholar 

  21. Murata, T., Fukami, K., Fukagata, K.: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 882, A13 (2020)

    Article  MathSciNet  Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  23. Anzai, Y., Fukagata, K., Meliga, P., Boujo, E., Gallaire, F.: Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators. Phys. Rev. Fluids 2, 043901 (2017)

    Article  Google Scholar 

  24. Kor, H., Ghomizad, M.B., Fukagata, K.: A unified interpolation stencil for ghost-cell immersed boundary method for flow around complex geometries. J. Fluid. Sci. Technol. 12, JFST0011 (2017)

    Article  Google Scholar 

  25. Amsden, A.A., Harlow, F.H.: The SMAC method, Los Alamos Scientific Lab. Report., No. LA-4370 (1970)

  26. Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)

    Article  MathSciNet  Google Scholar 

  27. Mitsuishi, A., Fukagata, K., Kasagi, N.: Near-field development of large-scale vortical structures in a controlled confined coaxial jet. J. Turbul. 8(23), 1–27 (2007)

    Google Scholar 

  28. Fukami, K., Nabae, Y., Kawai, K., Fukagata, K.: Synthetic turbulent inflow generator using machine learning. Phys. Rev. Fluids 4, 064603 (2019)

    Article  Google Scholar 

  29. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  30. Du, X., Qu, X., He, Y., Guo, D.: Single image super-resolution based on multi-scale competitive convolutional neural network. Sensors 18(789), 1–17 (2018)

    Google Scholar 

  31. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: The 32nd International Conference on Machine Learning. Lille, France (2015)

  32. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines, In: Proc. 27th International Conference on Machine Learning (2010)

  33. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error, arXiv preprint, arXiv:1511.05440v6 [cs.LG] (2016)

  34. Lee, S., You, D.: Data-driven prediction of unsteady flow over a circular cylinder using deep learning. J. Fluid Mech. 879, 217–254 (2019)

    Article  MathSciNet  Google Scholar 

  35. Kingma, D., Ba, J.: A method for stochastic optimization, arXiv preprint, arXiv:1412.6980 [cs.LG] (2014)

  36. Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  37. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw 11(4), 761–767 (1998)

    Article  Google Scholar 

  38. Graves, A., Jaitly, N., Mohamed, A.: Hybrid speech recognition with deep bidirectional LSTM, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech, Dec. 8-12 (2013)

  39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989)

    Article  Google Scholar 

  41. Ehlert, A., Nayeri, C.N., Morzynski, M., Noack, B.R.: Locally linear embedding for transient cylinder wakes, arXiv preprint, arXiv:1906.07822 [physics.flu-dyn] (2019)

Download references

Acknowledgements

Authors are grateful to Dr. S. Obi, Dr. K. Ando, Mr. M. Morimoto, and Mr. T. Nakamura (Keio University) for fruitful discussions. This work was supported through JSPS KAKENHI Grant Number 18H03758 by Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Fukagata.

Additional information

Communicated by Kunihiko Taira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, K., Fukami, K., Murata, T. et al. Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34, 367–383 (2020). https://doi.org/10.1007/s00162-020-00528-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00528-w

Keywords

Navigation