Skip to main content

Advertisement

Log in

In vitro and In silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium subplagiostomum AP1

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study aims to investigate the potential of Oedogonium subplagiostomum AP1 in the removal of methyl orange from aqueous solution. The effects of process parameters, namely, dye concentration, biosorbent concentration, pH and contact time on adsorption were optimised using RSM. The predictions of the model output specified that process parameters influenced responses at a confidence level of 95% (P < 0.05). Optimum conditions for methyl orange removal (97%) was obtained at pH 6.5, contact time of 5.5 days, algal dose of 400 mg/L and dye concentration of 500 mg/L. Adsorption isotherm, kinetics and thermodynamic studies were conducted to assess the decolourisation efficiency. The results indicated that Langmuir isotherm and pseudo-second-order kinetic models best fitted the experimental data. The thermodynamic parameters indicated that methyl orange biosorption onto alga is spontaneous, favourable and exothermic in nature. The biosorbent-adsorbate interactions were characterised using UV-Vis, FT IR, SEM with EDX and XRD. The reuse potential of treated dye solution was assessed by dyeing fabrics. The physical properties of fabrics dyed using algae-treated water are comparable with that of tap water–dyed fabric proving the reuse potential of treated water in textile industries. The algal biomass subjected to composting diminishes the level of pollution. In silico study was performed to observe the interaction between methyl orange (ligand) and receptor protein (azoreductase) which plays an important role in the biodegradation of textile dyes. Thus, the results showed that Oedogonium subplagiostomum AP1 could be employed as an efficient and eco-friendly biosorbent for the removal of methyl orange.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adi, A., & Noor, Z. (2009). Waste recycling: Utilization of coffee grounds and kitchen waste in vermicomposting. Bioresource Technology, 100(2), 1027–1030.

    Article  CAS  Google Scholar 

  • Akansha, K., Chakraborty, D., & Sachan, S. G. (2019). Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatalysis and Agricultural Biotechnology, 18, 101044.

    Article  Google Scholar 

  • Aksu, Z. (2003). Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochemistry, 8, 1437–1444.

    Article  CAS  Google Scholar 

  • Alaguprathana, M., & Poonkothai, M. (2018). Impact of untreated and bioremediated methyl orange on seed germination, growth and yield of flower plants - Marigold (yellow and orange), Celosia argentea. International Journal for Innovative research in Science and Technology, 5(7), 22–28.

    Google Scholar 

  • Alghamdi, A. A., Al-Odayni, A. B., Saeed, W. S., Al-Kahtani, A., Alharthi, F. A., & Aouak, T. (2019). Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials, 12, 2020.

    Article  CAS  Google Scholar 

  • Asses, N., Ayed, L., Hkiri, N., & Hamdi, M. (2018). Congo red decolorization and detoxification by Aspergillus niger: Removal mechanisms and dye degradation pathway. BioMed Research International, 18(2), 9.

    Google Scholar 

  • Balarak, D., Pirdadeh, F., & Mahdavi, Y. (2015). Biosorption of acid red 88 dyes using dried Lemna minor biomass. J. Sci. Technol. Environ. Inform, 1(2), 81–90.

    Article  Google Scholar 

  • Boudechiche, N., Mokaddem, H., Sadaoui, Z., & Trari, M. (2016). Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): Characterization, equilibrium, kinetic and thermodynamic studies. Int. J. Ind. Chem, 7(2), 167–180.

    Article  CAS  Google Scholar 

  • Bhatt, N., Patel, K. C., Keharia, H., & Madamwar, D. (2005). Decolourization of diazo-dye reactive blue 172 by Pseudomonas aeruginosa NBAR12. Journal of Basic Microbiology, 45, 407–418.

    Article  CAS  Google Scholar 

  • da Silva, B. C., Zanutto, A., & Pietrobelli, J. M. (2019). Biosorption of reactive yellow dye by malt bagasse. Adsorption Science & Technology, 37(3–4), 236–259.

    Article  CAS  Google Scholar 

  • Denniz, F., & Saygideger, S. D. (2010). Equilibrium, kinetic and thermodynamic studies of acid orange 52 dye biosorption by Paulownia tomentose steud. leaf powder as a low-cost natural biosorbent. Bioresource Technology, 101, 5137–5143.

    Article  CAS  Google Scholar 

  • Dotto, G. L., Vieira, M. L. G., Esquerdo, V. M., & Pinto, L. A. A. (2013). Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis. Brazilian Journal of Chemical Engineering, 30(1), 13–21.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. (1906). Over the adsorption in solution. The Journal of Physical Chemistry. A, 57, 385–470.

    CAS  Google Scholar 

  • Gao, Y., Yang, B., & Wang, Q. (2018). Biodegradation and decolorization of dye wastewater: A review. IOP Conf. Series. Earth Environ. Sci, 178, 012013.

    Article  Google Scholar 

  • Garg, P., Gupta, A., & Salya, S. (2006). Vermicomposting of different types of waste using Eisenia fetida: A comparative study. Bioresource Technology, 97, 391–395.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Bhushan, R., Nayak, A., Singh, P., & Bhushan, B. (2015). Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremediation Journal, 18, 179–191.

    Article  CAS  Google Scholar 

  • Govarthanan, M., Lee, G. W., Park, J. H., Kim, J. S., Lim, S. S., Seo, S. K., et al. (2014). Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil. Chemosphere, 109, 42–48.

    Article  CAS  Google Scholar 

  • Govarthanan, M., Mythili, R., Kamala-Kannan, S., Selvankumar, T., Srinivasan, P., & Kim, H. (2019a). In-vitro bio-mineralization of arsenic and lead from aqueous solution and soil by wood rot fungus, Trichoderma sp. Ecotoxicol Environ Saf, 174, 699–705.

    Article  CAS  Google Scholar 

  • Govarthanan, M., Kamala-Kannan, S., Selvankumar, T., Mythili, R., Srinivasan, P., & Kim, H. (2019). Effect of blue light on growth and exopolysaccharides production in phototrophic Rhodobacter sp. BT18 isolated from brackish water. Int J Biol Macromol, 131, 74–80.

    Article  CAS  Google Scholar 

  • Habibzadeh, S., Tayebi, H., Eerami, E., Shams, A., Nateri, M., & Bahmai, M. (2010). Silk dyeing using saw wood of the zelkoa forest tree. World Applied Sciences Journal, 9(3), 295–299.

    CAS  Google Scholar 

  • Hussein, M. H., Abou El-Wafa, G. S., Shaaban-Dessuki, S. A., & El-Morsy, R. M. (2018). Bioremediation of methyl orange onto Nostoc carneum biomass by adsorption, kinetics and isotherm studies. Global Advanced Research Journal of Microbiology, 7(1), 6–22.

    Google Scholar 

  • Jalil, A. A., Triwahyono, S., Yaakob, M. R., Azmi, Z. Z., Sapawe, N., Kamarudin, N. H., et al. (2012). Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. Bioresource Technology, 120, 218–224.

    Article  CAS  Google Scholar 

  • Kaviraj, S., & Sharma, S. (2003). Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technology, 90, 169–173.

    Article  CAS  Google Scholar 

  • Khamparia, S., & Jaspal, D. (2016). Adsorptive removal of direct red 81 dye from aqueous solution onto Argemone mexicana. Sustain Environ Res, 26(3), 117–123.

    Article  CAS  Google Scholar 

  • Kumar, S., Ahluwalia, A. S., & Charaya, M. U. (2019). Adsorption of Orange-G dye by the dried powdered biomass of Chlorella vulgaris Beijerinck. Current Science, 116(4), 604–611.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Lawton, R. J., de Nys, R., Skinner, S., & Paul, N. A. (2014). Isolation and identification of Oedogonium species and strains for biomass applications. PLoS One, 9(3), e90223.

    Article  CAS  Google Scholar 

  • Low, L. W., Teng, T. T., Morad, N., & Azahari, B. (2014). Optimization of the column studies into the adsorption of basic dye using tartaric acid-treated bagasse. Desalination Water Treat, 52(31–33), 6194–6205.

    Article  CAS  Google Scholar 

  • Majlessi, M., Eslami, A., Saleh, H. N., Mirshafieean, S., & Babaii, S. (2012). Vermicomposting of food waste: Assessing the stability and maturity. Iranian J Environ Health Sci Eng, 9(25), 1–6.

    Google Scholar 

  • Mohan, A., Kirubakaran, R., Parray, J. A., Sivakumar, R., Murugesh, E., & Govarthanan, M. (2020). Ligand-based pharmacophore filtering, atom based 3D-QSAR, virtual screening and ADME studies for the discovery of potential ck2 inhibitors. Journal of Molecular Structure, 1205, 127670.

    Article  CAS  Google Scholar 

  • Nadiya, K., & Kalaiarasi, K. (2018). Evaluation of different extraction methods for extraction of Eco-colorant from Pterocarpus marsupium saw dust. International Journal of Pure and Applied Mathematics, 118(20), 4463–4471.

    Google Scholar 

  • Namasivayam, C., & Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments, 54, 47–58.

    Article  CAS  Google Scholar 

  • Ong, S. A., Inadama, D., Uchiyama, K., & Ishida, Y. (2010). Phytoremediation of industrial effluent containing azo dye by model up-flow constructed wetland. Chinese Chem Lett, 20(2), 225–228.

    Article  CAS  Google Scholar 

  • Ozer, A., Akkaya, G., & Turabik, M. (2006). Biosorption of acid blue 290 (AB 290) and acid blue 324 (AB 324) dyes on Spirogyra rhizopus. Journal of Hazardous Materials B, 135, 355–364.

    Article  CAS  Google Scholar 

  • Philem, P. R., & Adhikari, S. (2012). Homology modeling, docking studies and functional analysis of various azoreductase accessory interacting proteins of Nostoc sp.PCC7120. Bioinformation, 8(7), 296–300.

    Article  Google Scholar 

  • Praburaman, L., Park, J. H., Govarthanan, M., Selvankumar, T., Oh, S. G., Jang, J. S., et al. (2015). Impact of an organic formulation (panchakavya) on the bioleaching of copper and lead in contaminated mine soil. Chemosphere, 138, 127–132.

    Article  CAS  Google Scholar 

  • Rachna, P., & Sumathi, S. (2008). Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresource Technology, 99(1), 51–58.

    Article  CAS  Google Scholar 

  • Radha, S., Fathima, A. A., Iyappan, S., & Ramya, M. (2013). Direct colony PCR for rapid identification of varied microalgae from freshwater environment. Journal of Applied Phycology, 25, 609–613.

    Article  CAS  Google Scholar 

  • Sadaf, S., Bhatti, H. N., Ali, S., & Rehman, K. (2014). Removal of indosol turquoise FBL dye from aqueous solution by bagasse, a low cost agricultural waste: Batch and column study. Desalination and Water Treatment, 52, 184–198.

    Article  CAS  Google Scholar 

  • Saha, M., Eskicioglu, C., & Marin, J. (2011). Microwave, ultrasonic and chemo-mechanical pre-treatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource Technology, 102(17), 7815–7826.

    Article  CAS  Google Scholar 

  • Samantaa, A. K., & Agarwal, P. (2007). Dyeing of jute and cotton fabrics using jackfruit wood extract: Part I - effects of mordanting and dyeing process variables on colour yield and colour fastness properties. Indian J Fibre Text, 32, 466–476.

    Google Scholar 

  • Santhy, K., & Selvapathy, P. (2006). Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresource Technology, 97, 1329–1336.

    Article  CAS  Google Scholar 

  • Sari, A., & Tuzen, M. (2008). Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 157, 448–454.

    Article  CAS  Google Scholar 

  • Sarwa, P., Vijayakumar, R., & Verma, S. K. (2014). Adsorption of acid red 66 dye from aqueous solution by green microalgae Acutodesmus obliquus strain PSV2 isolated from an industrial polluted site. Open Access Library Journal, e712, 1–8.

    Google Scholar 

  • Selvam, K, Govarthanan, M., Senthilkumar, B., Senbegam, D., Selvankumar, T., Kamala-Kannan, S., et al. (2016). Optimization of protease production from surface modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 6, 167.

  • Selvankumar, T., Sudhakar, C., Govindaraju, M., Selvam, K., Aroulmoji, V., Sivakumar, V., et al. (2017). Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp. 3 Biotech, 7, 254.

    Article  CAS  Google Scholar 

  • Singh, D., & Suthar, S. (2012). Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresource Technology, 112, 179–185.

    Article  CAS  Google Scholar 

  • Sisodia, N., & Parmar, M. S. (2014). Dyeing behavior and fastness properties of corn (PLA) fiber. Journal of Polymer and Textile Engineering, 1(2), 01–07.

    Article  Google Scholar 

  • Sivarajasekar, N., Baskar, R., & Balakrishnan, V. (2009). Biosorption of an azo dye from aqueous solutions onto Spirogyra. Journal of the University of Chemical Technology and Metallurgy, 44(2), 157–164.

    CAS  Google Scholar 

  • Stephen, I. B., Chien, J. T., Ho, G. H., Yang, J., & Chen, B. H. (2006). Equilibrium and kinetics studies on sorption of basic dyes by a natural polymer (γ-glutamic acid). Biochemical Engineering Journal, 31, 204–215.

    Article  CAS  Google Scholar 

  • Thakuria, B., Jungai, N., & Adhikar, S. (2015). Catalytic site prediction of azoreductase enzyme of E. coli with potentially important industrial dyes using molecular docking tools. Int J Biosci Biochem Bioinforma, 5(2), 91–99.

    CAS  Google Scholar 

  • Thirumalaisamy, R., Ameen, F., Subramanian, A., Selvankumar, T., Alwakeel, S. S., & Govarthanan, M. (2020). In-vitro and in-silico anti-inflammatory activity of lupeol isolated from Crateva adansonii and its hidden molecular mechanism. International Journal of Peptide Research and Therapeutics. https://doi.org/10.1007/s10989-019-10006-5.

  • Thiyagarajan, P., Sengottaiyan, A., Selvam, K., Sudhakar, C., Ashraf, Y. Z., Khalifa, A. V., & Selvankumar, T. (2020). Biodegradation of acid yellow using laccase produced by Bacillus sp. strain TR and its In-silico modeling of the dye degradation system. International Journal of Peptide Research and Therapeutics 10.1007/s10989-019-10005-6.

  • Vigneshpriya, D., Krishnaveni, N., & Renganathan, S. (2017). Marine brown macroalga Sargassum wightii as a novel biosorbent for removal of brilliant green dye from aqueous solution: Kinetics, equilibrium isotherm modeling and phytotoxicity of treated and untreated dye. Desalination Water Treat, 78, 300–312.

    Article  CAS  Google Scholar 

  • Vilar, V. J., Cidalia, P., Botelho, M. S., Rui, A., & Boaventura, R. (2006). Methylene blue adsorption by algal biomass based materials: Biosorbent characterization and process behaviour. Journal of Hazardous Materials, 147, 120–132.

    Article  CAS  Google Scholar 

  • Zaki, A. B., El-Sheikh, M. Y., Evans, J., & El-Safty, S. A. (2000). Kinetics and mechanism of the sorption of some aromatic amines onto amberlite IRA-904 anion-exchange resin. Journal of Colloid and Interface Science, 221(1), 58–63.

    Article  CAS  Google Scholar 

  • Zulrushdi, N. A. F., Hassan, R. M., & Yusoff, A. M. (2016). Microwave-assisted extraction of natural colorant extracted from mesocarp and exocarp of Cocos nucifera (coconut palm). European J. Biotechnol. Biosci, 4(4), 01–05.

    Google Scholar 

Download references

Acknowledgements

The authors wish to place their record of thanks to the authorities of the Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore and DST CURIE (No.SR/CURIE/PHASE II/01/2014) for the support given to conduct the study successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonkothai Mani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruthanayagam, A., Mani, P., Kaliappan, K. et al. In vitro and In silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium subplagiostomum AP1. Water Air Soil Pollut 231, 232 (2020). https://doi.org/10.1007/s11270-020-04585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04585-z

Keywords

Navigation