Skip to main content
Log in

Laws of the Lattices of \(\sigma \)-Local Formations of Finite Groups

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let n be a positive integer, and let \(\sigma = \{\sigma _i \mid i \in I\}\) be a partition of the set of all primes. It is shown that every law of the lattice of all formations is fulfilled in the lattice of all n-multiply \(\sigma \)-local formations of finite groups. This result implies that the lattice of all n-multiply \(\sigma \)-local formations of finite groups is modular but not distributive for any nonnegative integer n. Let \({\mathfrak {F}}\) and \({\mathfrak {H}}\) be n-multiply \(\sigma \)-local formations of finite groups such that \({\mathfrak {H}} \subseteq {\mathfrak {F}}\). Denote by \({\mathfrak {F}} /_n^\sigma {\mathfrak {H}}\) the lattice of all n-multiply \(\sigma \)-local formations \({\mathfrak {M}}\) such that \({\mathfrak {H}} \subseteq {\mathfrak {M}} \subseteq {\mathfrak {F}}\). If \({\mathfrak {M}} \subset {\mathfrak {F}}\) and the lattice \({\mathfrak {F}} /_n^\sigma {\mathfrak {M}}\) consists of only two elements then \({\mathfrak {M}}\) is called a maximal n-multiply \(\sigma \)-local subformation of \({\mathfrak {F}}\). The properties of the intersection of the maximal n-multiply \(\sigma \)-local subformations of \(\mathfrak F\) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  2. Ballester-Bolinches, A., Cosme-Llópez, E., Esteban-Romero, R., Rutten, J.J.M.M.: Formations of monoids, congruences, and formal languages. Sci. Ann. Comput. Sci. 25(2), 171–209 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Ballester-Bolinches, A., Pin, J.-É., Soler-Escrivà, X.: Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited. Forum Math. 26(6), 1737–1761 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Ballester-Bolinches, A., Pin, J.-É., Soler-Escrivà, X.: Languages associated with saturated formations of groups. Forum Math. 27(3), 1471–1505 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bini, G., Flamini, F.: Finite Commutative Rings and Their Applications. The Springer International Series in Engineering and Computer Science 680. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  6. Bozapalidis, S., Louscou-Bozapalidou, O.: On the recognizability of fuzzy languages I. Fuzzy Sets Syst. 157(17), 2394–2402 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bozapalidis, S., Louscou-Bozapalidou, O.: On the recognizability of fuzzy languages II. Fuzzy Sets Syst. 159(1), 107–113 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Cao, C., Hussain, M.T., Zhang, L.: On \(n\)--embedded subgroups of finite groups. Acta Math. Hung. 155(2), 502–517 (2018)

    Google Scholar 

  9. Chi, Zh, Safonov, V.G., Skiba, A.N.: On \(n\)-multiply -local formations of finite groups. Commun. Algebra (2019). https://doi.org/10.1080/00927872.2018.1498875

    MathSciNet  MATH  Google Scholar 

  10. Chi, Zh, Skiba, A.N.: A generalization of Kramer’s theory. Acta Math. Hung. 158(1), 87–99 (2019)

    MathSciNet  Google Scholar 

  11. Christensen, C.: An analogue of Lubeseder’s theorem for formations of finite rings. J. Austr. Math. Soc. 16(3), 375–378 (1973)

    MathSciNet  MATH  Google Scholar 

  12. Dixon, M.R.: Sylow Theory, Formations, and Fitting Classes in Locally Finite Groups, vol. 2. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  13. Doerk, K., Hawkes, T.: Finite Soluble Groups, De Gruyter Expositions in Mathematics, 4. Walter de Gruyter, Berlin, New York (1992)

    MATH  Google Scholar 

  14. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1976)

  15. Förster, P.: Frattini classes of saturated formations of finite groups. Bull. Austr. Math. Soc. 42, 267–286 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Gardiner, A.D., Hartley, B., Tomkinson, M.J.: Saturated formations and Sylow structure in locally finite groups. J. Algebra 17, 177–211 (1971)

    MathSciNet  MATH  Google Scholar 

  17. Gaschütz, W.: Zur Theorie der endlichen auflösbaren Gruppen. Math. Z. 80(4), 300–305 (1963)

    MathSciNet  MATH  Google Scholar 

  18. Guo, W.B., Skiba, A.N., Chi, Zh: On -supersoluble groups and one generalization of \(CLT\)-groups. J. Algebra 512, 92–108 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Guo, W.B., Skiba, A.N.: On -semipermutable subgroups of finite groups. J. Group Theory 18, 191–200 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Guo, W.B., Skiba, A.N.: On -semipermutable subgroups of finite groups. Acta Math. Sin. (English Ser) 34(9), 1379–1390 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Guo, W.B., Skiba, A.N.: Finite groups whose \(n\)-maximal subgroups are \(\sigma \)-subnormal. Sci. China Math. (2018). https://doi.org/10.1007/s11425-016-9211-9

  22. Guo, W.B., Skiba, A.N.: On \(\Pi \)-quasinormal subgroups of finite groups. Monatsh. Math. 185(3), 443–453 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Guo, W.B., Zhang, L., Vorob’ev, N.T.: On \(\sigma \)-local Fitting classes. J. Algebra 542(15), 116–129 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Herzfeld, U.C.: Frattiniklassen und maximale Teilklassen, insbesondere zu Formationen endlicher Gruppen. Dissertation, Mainz (1986)

  25. Herzfeld, U.C.: Frattiniclasses and maximal subclasses, in particular of saturated formations of finite groups. J. Algebra 117, 93–98 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Herzfeld, U.C.: Frattiniclasses of formations of finite groups. Boll. Un. Mat. Ital. 7(2–B), 601–611 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Higman, G.: Representations of general linear groups and varieties of groups, Proc. Int. Conf. Theory of Groups 167–173 (1965)

  28. Ignjatović, J., Ćirić, M., Bogdanović, S., Petković, T.: Myhill–Nerode type theory for fuzzy languages and automata. Fuzzy Sets Syst. 161(9), 1288–1324 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Kostrikin, A.: Around Burnside. Ergeb. Math. Grenzgeb. 3. Folge 20. Springer, Berlin (1990)

  30. Kovaleva, V.A.: A criterion for a finite group to be -soluble. Commun. Algebra 46(12), 5410–5415 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Kramer, O.-U.: Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes. Math. Z. 139, 63–68 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Mao, Y.M., Cao, Ch.Ch., Guo, W.B.: On -conditionally permutable subgroups of finite groups. Commun. Algebra (2019). https://doi.org/10.1080/00927872.2019.1584813

  33. Rahonis, G.: Fuzzy languages. In: M. Droste, W. Kuich, H. Vogler (eds.) Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, New York, pp. 481–517 (2009)

  34. Safonov, V.G.: On a question of A.N. Skiba about totally saturated formations. Algebra Discrete Math. 2008(3), 88–97 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Skiba, A.N.: Algebra of Formations. Belaruskaya Navuka, Minsk (1997) (in Russian)

  36. Skiba, A.N.: Formations with given systems of subformations. Dokl. Akad. Nauk Bel. SSR 23(12), 1073–1076 (1979). (in Russian)

    MathSciNet  MATH  Google Scholar 

  37. Skiba, A.N.: On critical formations, Vestsi Akad. Nauk BeL SSR. Set. Fiz.-Mat. Navuk. 4, 27–33 (1980) (in Russian)

  38. Skiba, A.N.: On some results in the theory of finite partially soluble groups. Commun. Math. Stat. 4(3), 281–309 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Skiba, A.N.: On -subnormal and -permutable subgroups of finite groups. J. Algebra 436, 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Skiba, A.N.: Some characterizations of finite -soluble \(P\, \,T\)-groups. J. Algebra 495, 114–129 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Skiba, A.N., Chi, Zh: On \(\Sigma _t^\sigma \)-closed classes of finite groups. Ukr. Mat. Zh. 70(12), 1707–1716 (2018)

    MathSciNet  Google Scholar 

  42. Shemetkov, L.A.: Formations of Finite Groups. Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow (1978) (in Russian)

  43. Shi, M., Alahmadi, A., Sole, P.: Codes and Rings: Theory and Practice. Academic Press/Elsevier (2017). https://doi.org/10.1016/C2016-0-04429-7

  44. Tsarev, A.: Formations of finite monoids and their applications: formations of languages and \(\tau \)-closed saturated formations of finite groups. Ann. Univ. Ferrara (2019). https://doi.org/10.1007/s11565-019-00316-3

  45. Tsarev, A.: Frattini subformations of foliated formations of \(T\)-groups. Boll. Un. Mat. Ital. (2019). https://doi.org/10.1007/s40574-019-00206-8

  46. Tsarev, A.: On the maximal subformations of partially composition formations of finite groups. Bol. Soc. Mat. Mex. 25(2), 333–338 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Tsarev, A.: On classes of finite rings. In: Revista de la Unión Matemática Argentina (2020) (in press)

  48. Tsarev, A.: Frattini subformations of foliated formations of \(T\)-groups. Rend. Circ. Mat. Palermo, II Ser 68 (3) (2019)

  49. Wee, W.G.: On generalization of adaptive algorithm and applications of the fuzzy sets concept to pattern classification. PhD Dissertation, Purdue University, Lafayette (1967)

  50. Wei, X.B.: On weakly \(m\)--permutable subgroups of finite groups. Commun. Algebra (2019). https://doi.org/10.1080/00927872.2018.1498874

Download references

Acknowledgements

The author is grateful to the referee for valuable comments which caused an improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Tsarev.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by Basic Science Research Program to RIBS of Jeju National University through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2019R1A6A1A10072987) and by the grant F19RM-071 from the Belarusian Republican Foundation for Fundamental Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsarev, A. Laws of the Lattices of \(\sigma \)-Local Formations of Finite Groups. Mediterr. J. Math. 17, 75 (2020). https://doi.org/10.1007/s00009-020-01510-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01510-w

Keywords

Mathematics Subject Classification

Navigation