Skip to main content

Advertisement

Log in

History of the Statistical Design of Agricultural Experiments

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

In Section 1 the approach of improving crop yields by the development of agriculture and addition of various mineral or organic substances in the last 200–300 years is investigated. In Section 2 the principle of randomized experiments is treated. Section 3 describes the variety trials of field crops. The elimination of effects in two dimensions is shown in Section 4 on Row–Column designs. Fertilizer trials are treated in Section 5 (qualitative factors) and in Section 6 (quantitative factors). Field trials with spatial analysis are discussed in Section 7. In Section 8 remarks on analysis and optimal experimental design are made.

Supplementary materials accompanying this paper appear on-line

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, A. C. and Bailey, R. A. (2001), “One hundred years of the design of experiments on and off the pages of Biometrika,” Biometrika, 88, 53–97.

    MathSciNet  MATH  Google Scholar 

  • Atkinson, A. C. and Donev, A. N. (1992), Optimum Experimental Designs, Oxford University Press, Oxford, Clarendon Press.

  • Atkinson, A., Donev, A., Tobias, R. (2007), Optimum Experimental Designs, with SAS, Oxford Statistical Science Series., Oxford, New York.

  • Atkinson, A. C., Fedorov, V. V., Pronzato, L., Wynn, H. P., Zhigljavsky, A. A. (2014), Design of Optimal Experiments. Theory and Contemporary Applications, John Wiley & Sons Inc, ISSN 9781118139165.

  • Azaïs, J. M. (1987), “Design of experiments for studying intergenotypic competition,” Journal of the Royal Statistical Society, Series B, 49, 334-345.

    MathSciNet  MATH  Google Scholar 

  • Azaïs, J. M., Bailey, R. A. and Monod, H. (1993), “A catalogue of efficient neighbor designs with border plots,” Biometrics, 49, 1252-1261.

    Google Scholar 

  • Bailey, R. A. (1984), “Quasi-complete Latin squares: construction and randomization,” Journal of the Royal Statistical Society Series B, 46, 323-334.

    MathSciNet  MATH  Google Scholar 

  • Bailey, R.A (1988), “Semi-Latin squares,” Journal of Statistical Planning and Inference, 8, 299-312.

    MathSciNet  MATH  Google Scholar 

  • Bailey, R.A. (1992), “Efficient semi-Latin squares,” Statistica Sinica, 2, 413-437

    MathSciNet  MATH  Google Scholar 

  • Bailey, R. A. (2008), Design of Comparative Experiments, Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Bartlett, M. S. (1938), “The approximate recovery of information from replicated field experiments with large blocks,” Journal of Agricultural Science, Cambridge, 28, 418–427.

    Google Scholar 

  • Berg, W. van den (1999), “Procedure Agsemilatin generates semi-Latin squares,” in Genstat 5 Procedure Library Manual Release PL11. Oxford: Numerical Algorithms Group.

  • Berry, D. J. (2015), “The resisted rise of randomization in experimental design: British agricultural science, c.1910-1930,” History and Philosophy of the Life Sciences, 37(3), 242 - 260. ISSN 0391-9714.

    Google Scholar 

  • Besag, J. and Kempton, R. (1986), “Statistical analysis of field experiments using neighbouring plots,” Biometrics, 42, 231–251.

    MATH  Google Scholar 

  • Box, Joan Fisher (1978), R. A. Fisher: The Life of a Scientist. Wiley, New York.

    MATH  Google Scholar 

  • Box, Joan Fisher (1980), “R. A. Fisher and the Design of Experiments, 1922 – 1926,” The American Statistician, 34, 1–7.

    MathSciNet  MATH  Google Scholar 

  • Box, G., Hunter, W. and Hunter, S. (2005), Statistics for Experimenters: Design, Innovation, and Discovery, \(2^{\text{nd}}\) edition, Wiley-Intersciences, New York, NY, USA.

  • Box, G. E. P. and Wilson, K. B. (1951), “On the experimental attainment of optimum conditions,” Journal of the Royal Statistical Society, Series B, 13, 1–45.

    MathSciNet  MATH  Google Scholar 

  • Butler, D. G. (2013), On The Optimal Design of Experiments Under the Linear Mixed Model, PhD thesis, University of Queensland.

  • Caliński, T. (1971), “On some desirable patterns in block designs,” Biometrics, 27, 275-292.

    Google Scholar 

  • Chang, Y. J. and Notz, W. I. (1990), “Method of constructing optimal block designs with nested rows and columns,” Utilitas Mathematica, 38, 263–276.

    MathSciNet  MATH  Google Scholar 

  • Cheng, C. S. (1986), “A method for constructing balanced incomplete block designs with nested rows and columns,” Biometrika, 73, 695–700.

    MathSciNet  MATH  Google Scholar 

  • Cochran, W. G. and Cox, G. M. (1950), Experimental Designs, \(1^{st}\)edition, John Wiley & Sons, Inc., New York, London, Bombay.

  • Cochran, W. G. and Cox, G. M. (1957), Experimental Designs, \(2^{\text{ nd }}\) edition, John Wiley & Sons, Inc., New York, London, Bombay. [Added are two chapters: 6A (Factorial experiments in fractional replication) and 8A (Some methods for the study of response surfaces)].

  • Coombes, N. E (2002), The reactive tabu search for efficient correlated experimental designs. PhD thesis, John Moores University, Liverpool UK.

  • Coombes, N. E., Payne, R. W. and Lisboa, P. (2002), “Comparison of nested simulated annealing and reactive tabu search for efficient experimental designs with correlated data,” in COMPSTAT 2002 Proceedings in Computational Statistics, eds. W. Haerdle and B. Ronz, pp. 249-254. Heidelberg, Physica-Verlag.

    Google Scholar 

  • Corsten, L. C. A. (1958), Vectors, a tool in statistical regression theory. PhD Thesis, Landbouwhogeschool Wageningen, Veenman, The Netherlands

  • Cullis, B. R. and Gleeson, A.C. (1991), “Spatial analysis of field experiments – An extension to two dimensions,” Biometrics, 47, 1449–1460.

    Google Scholar 

  • Cullis, B. R., Smith, A. B. and Coombes, N. E. (2006), “On the design of early generation variety trials with correlated data,” Journal of Agricultural, Biological and Environmental Statistics, 11 (4), 381-393.

    Google Scholar 

  • CycDesigN (2014), A package for the computer generation of Experimental Designs. (see the website of VSN-international: http://www.vsni.co.uk/software/cycdesign/).

  • Dyke, G. V. (1993), John Lawes of Rothamsted: pioneer of science, farming and industry, Hoos Press, Harpenden, Herts, UK.

    Google Scholar 

  • Eccleston, J. and Chan, B. (1998), “Design algorithms for correlated data,” in COMPSTAT 1998, Proceedings in Computational Statistics, eds. R. Payne and P. Green, pp. 41-52. Physica-Verlag, Heidelberg.

    Google Scholar 

  • Eden, T. (1931), “Studies in the yield of tea: I. The experimental errors of field experiments with tea,” Journal of Agricultural Science, Cambridge, 21, 547–573.

    Google Scholar 

  • Eden, T. and Fisher, R. A. (1927), “Studies in crop variation VI. The experimental determination of the value of top dressing with cereals,” Journal of Agricultural Science, Cambridge, 17, 548-562.

    Google Scholar 

  • Edmondson, R. N. (1998), “Trojan squares and incomplete Trojan square designs for crop research,” Journal of Agricultural Science, Cambridge, 131, 135–142.

    Google Scholar 

  • Edmondson, R. N. (2002), “Generalised incomplete Trojan design,” Biometrika, 89, 877–891.

    MathSciNet  MATH  Google Scholar 

  • Edmondson, R. N. (2005), “Past developments and future opportunities in the design and analysis of crop experiments,” Journal of Agricultural Science, Cambridge, 143, 27–33.

    Google Scholar 

  • Edmondson, R. N. (2019), “Package ’blockdesign’,” https://cran.r-project.org/web/packages/blocksdesign/index.html

  • Federer, W. T and Schlottfeldt, C. S. (1954), “The use of covariance to control gradients,” Biometrics, 10, 282–290.

    Google Scholar 

  • Finney, D. J. (1945), “The fractional replication of factorial and arrangements,” Annals of Eugenics, 12, 291 – 301.

    MathSciNet  MATH  Google Scholar 

  • Finney, D. J. (1946), “Recent developments in the design of field experiments, III fractional replications,” Journal of Agricultural Science, Cambridge, 36, 184–191.

    Google Scholar 

  • Fisher, R. A. (1925a), “Applications of Student’s distribution,” Metron, 5, 90-104.

    MATH  Google Scholar 

  • Fisher, R. A. (1925b), Statistical Methods for Research Workers, \(1^{\text{ st }}\) edition, Oliver & Boyd, Edinburgh. (fifth edition, 1934).

  • Fisher, R. A.(1926), “The arrangement of field experiments,” Journal of the Ministry of Agriculture of Great Britain, 33, 503 – 513.

    Google Scholar 

  • Fisher, R. A. (1935), The Design of Experiments, \(1^{\text{ st }}\) edition, Oliver & Boyd, Edinburgh. (Eighth edition 1966; reprinted 1971, Hafner Publishing Company, Inc., New York).

  • Fisher, R. A. (1956), Statistical Methods and Scientific Inference, Oliver and Boyd, Edinburgh. [Later edition: 1959].

    MATH  Google Scholar 

  • Fisher, R. A. and Mackenzie, W. A. (1923), “Studies in crop variation. II The manurial response of different potato varieties,” Journal of Agricultural Science, Cambridge, 13, 311–320.

    Google Scholar 

  • Fisher, R. A. and Yates, F. (1934), “The 6x6 Latin Squares,” Proceedings of the Cambridge Philosophical Society, 30, 492–507.

    MATH  Google Scholar 

  • Fisher, R. A, and Yates, F. (1938), Statistical Tables for biological, agricultural and medical research, first edition, Oliver and Boyd, Edinburgh, London, UK. (sixth edition 1963).

  • Fedorov. V. (2010), Optimal experimental design. https://doi.org/10.1002/wics.100

  • Franklin, M. F. (1985), “Selecting defining contrasts and confounded effects in \({\text{ p }}^{\text{ n-m }}\) factorial experiments,” Technometrics, 27, 165-172

    MathSciNet  MATH  Google Scholar 

  • Franklin M. F. and Bailey R. A., (1977), “Selection of defining contrasts and confounded effects in two-level experiments,” Applied Statistics, 26, 321-326.

    Google Scholar 

  • Gilmour, A. R., Cullis, B. R. and Verbyla, A. P. (1997), “Accounting for natural and extraneous variation in the analysis of field experiments,” Journal of Agricultural, Biological and Environmental Statistics, 2, 269–263.

    MathSciNet  Google Scholar 

  • Gleeson. A. and Cullis, B.R. (1987), “Residual maximum likelihood (REML) estimation of a neighbour model for field experiments,” Biometrics, 43, 277–288.

    Google Scholar 

  • Gower, J. C. (1988), “Statistics and agriculture,” Journal of the Royal Statistical Society, Series A (Statistics in Society), 151 (1), 179-200.

    Google Scholar 

  • Gregory, Peter J. and Nortcliff, Stephen (editors) (2013), Soil conditions and plant growth, Wiley-Blackwell Ltd., John Wiley & Sons Ltd., Chichester, UK.

  • Hacking, I. (1988), “Telepathy: Origins of Randomization,” in Experimental Design, 79, No.3, A Special Issue on Artifact and Experiment, 427-451, The University of Chicago Press on behalf of The History of Science Society.

  • Hall, Nancy S. (2007), “R. A. Fisher and his advocacy of randomization,” Journal of the History of Biology, 40, 295-325.

    Google Scholar 

  • Hedayat, A. and Federer, W. T. (1975), “On the Nonexistence of Knut Vik Designs for all Even Orders,” The Annals of Statistics, 3, 445-447.

    MathSciNet  MATH  Google Scholar 

  • Hignett, Travis P. (ed.) (1985), Fertilizer Manual, Springer Science + Business Media, Dordrecht, The Netherlands.

  • Hocking, R. R. and Kutner, M. H. (1975), “Some analytical and numerical comparisons of estimators for the mixed A.O.V. model,” Biometrics, 31, 19–28.

    MathSciNet  MATH  Google Scholar 

  • Hsu, J. C. (1996), Multiple Comparisons, Chapman & Hall, London.

    MATH  Google Scholar 

  • Ipinyomi, R. A. and John, J. A. (1985), “Nested generalized cyclic row-column designs,” Biometrika, 72, 403–409.

    MathSciNet  MATH  Google Scholar 

  • John, J. A. and Williams, E. R. (1995), Cyclic and Computer Generated Designs, second edition, Chapman & Hall, London, Glasgow, Weinstein, New York, Tokyo, Melbourne, Madras.

    MATH  Google Scholar 

  • John, J. A., Wolock, F. W. and David, H. A. (1972), Cyclic Designs. National Bureau of Standards, Applied Mathematics Series 62.

  • Johnston, A. E. and Poulton, P. R. (2018), “The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience,” European Journal of Soil Science, 69, 113-125.

    Google Scholar 

  • Jones, B. and Nachtsheim, C. J. (2009), “Split-Plot Designs: What, Why and How,” Journal of Quality Technology, 41, 340–361.

    Google Scholar 

  • Khuri, A. I. (2017), “A general Overview of Response Surface Methodology,” Biometrics & Biostatistics International Journal, 5(Issue 3, 0013), 8. https://doi.org/10.15406/bbij.2017.05.00133.

    Article  Google Scholar 

  • Kuiper, N. H. (1952), “Variantie-analyse,” Statistica, 6, 149-194. An English translation of this Dutch article is published in 1983 as “Analysis of Variance,” Mededelingen van de Landbouwhogeschool te Wageningen, Nederland, 83(10).

  • Lamacraft, R. R. and Hall, W. B. (1982), “Tables of incomplete cyclic block designs: r=k,” Australian Journal of Statistics, 24, 350-360.

    MathSciNet  MATH  Google Scholar 

  • Liebig, J. (1840), Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie (Eng. Organic chemistry in its applications to agriculture and physiology), Friedrich Vieweg und Sohn Publ. Co., Braunschweig, Germany.

  • Liebig, J. von (1855a), Die Grundsätze der Agricultur-Chemie mit Rücksicht auf die in England angestellten Untersuchungen\(1^{\text{ st }}\) and \(2^{\text{ nd }}\) ed., Friedrich Vieweg und Sohn Publ. Co., Braunschweig, Germany.

  • Liebig, J. von (1855b), The principles of agricultural chemistry, with special reference to the late researches made in England, (translated by William Gregory, Professor of Chemistry in the University of Edinburgh), John Wiley, 167 Broadway, USA.

  • Maindonald, J.H. and Cox, N.R. (1984), “Use of statistical evidence in some recent issues of DSIR agricultural journals,” New Zealand Journal of Agricultural Research, 27, 597-610.

    Google Scholar 

  • Mead, R. and Pike, D. J. (1975), “A review of response surface methodology from a biometric point of view,” Biometrics, 31, 571–590.

    MATH  Google Scholar 

  • Miller, R. G. (1981), Simultaneous Statistical Inference, Springer Verlag, New York.

    MATH  Google Scholar 

  • Mohany, R.G. (2001), Papadakis Nearest Neighbor Analysis of yield in agricultural experiments, Conference on Applied Statistics, Kansas State University. https://doi.org/10.4148/2175-7772.1216.

  • Nelder, J. A. (1965a), “The analysis of randomized experiments with orthogonal block structure. I Block structure and the null analysis of variance,” Proceedings of the Royal Society, Series A, 283, 147-162.

    MathSciNet  MATH  Google Scholar 

  • Nelder, J. A. (1965b), “The analysis of randomized experiments with orthogonal block structure. II Treatment structure and the general analysis of variance,” Proceedings of the Royal Society, Series A, 283, 163-178.

    MathSciNet  MATH  Google Scholar 

  • Papadakis, J. S. (1937), Méthode statistique pour des expériences sur champ, Bulletin 23, Institut pour l’Amélioration des Plantes, Salonique (Grèce).

  • Parsad, R. , Gupta, V. K. and Voss, D. (2001), “Optimal Nested Row-Column Designs,” Journal of the Indian Agricultural Statistics, 54(2), 224–257.

    MathSciNet  MATH  Google Scholar 

  • Patterson, H.D. (1976), “Generation of factorial designs,” Journal of the Royal Statistical Society, Series B, 38, 175-179

    MathSciNet  MATH  Google Scholar 

  • Patterson, H.D. and Bailey, R.A. (1978), “Design keys for factorial experiments,” Applied Statistics, 27, 335-343.

    MATH  Google Scholar 

  • Patterson, H. D. and Robinson, D. L. (1989), “Row-and-column designs with two replicates,” Journal of Agricultural Science, Cambridge, 112, 73–77.

    Google Scholar 

  • Patterson, H. D, and Silvey, V. (1980), “Statutory and recommended list trials of crop varieties in the United Kingdom (with discussion),” Journal of the Royal Statistical Society, Series A, 143, 219–252.

    Google Scholar 

  • Patterson, H. D. and Thompson, R. (1971), “Recovery of inter-block information when block sizes are unequal,” Biometrika, 58, 545–554.

    MathSciNet  MATH  Google Scholar 

  • Patterson, H. D. and Thompson, R. (1975), “Maximum likelihood estimation of components of variance,” in Proceedings of the\(8^{th}\)International Biometric Conference, Constanta, eds. Corsten, L.C.A. and Postelnicu, T., pp. 197-207.

  • Patterson, H. D. and Wiiliams, E. R. (1976), “A New Class of Resolvable Incomplete Block Designs,” Biometrika, 63, 83–92.

    MathSciNet  Google Scholar 

  • Patterson, H. D., Williams, E. R. and Hunter, E. A. (1978), “Block designs for variety trials,” Journal of Agricultural Science, Cambridge, 90, 395-400.

    Google Scholar 

  • Payne, R. W. and Franklin, M. F. (1994), “Data structures and algorithms for an open system to design and analyse generally balanced designs,” in COMPSTAT 94 Proceedings in Computational Statistics, eds. R. Dutter and W. Grossman, pp. 429-434. Heidelberg, Physica-Verlag.

    Google Scholar 

  • Payne, R. W. and Tobias, R. D. (1992), “General balance, combination of information and the analysis of covariance,” Scandinavian Journal of Statistics, 19, 3-23.

    MathSciNet  MATH  Google Scholar 

  • Pedersen E.J, Miller D.L, Simpson G.L, Ross N. (2019), “Hierarchical generalized additive models in ecology: an introduction with mgcv,” PeerJ 7, e6876. https://doi.org/10.7717/peerj.6876.

    Article  Google Scholar 

  • Perry, J.N. (1986), “Multiple-comparison procedures: a dissenting view,” J. Econ. Entomol., 79, 1149-1155.

    Google Scholar 

  • Piepho, H. P., Richter, C. and Williams, E. R. (2008), “Nearest neighbour adjustment and linear variance models in plant breeding trials,” Biometrical Journal, 50, 164–189.

    MathSciNet  MATH  Google Scholar 

  • Piepho, H. P. and Williams, E. R. (2010), “Linear variance models for plant breeding trials,” Plant Breeding, 129, 1–8.

    Google Scholar 

  • Piepho, Hans-Peter, Möhring, Jens, Pflugfelder, Markus, Hermann, Winfried and Williams, Emlyn R. (2015), “Problems in parameter estimation for power and AR(1) models of spatial correlation in designed field experiments,” Communications in Biometry and Crop Science, 10, 3–16.

    Google Scholar 

  • Piepho, H. P., Michel, V. and Williams, E. R. (2018), “Neighbour balance and evenness of distribution of treatment replications in row-column designs,” Biometrical Journal, 60, 1172–1189.

    MathSciNet  MATH  Google Scholar 

  • Preece, D. A. (1990), “R. A. Fisher and Experimental Design: A Review,” Biometrics, 46, 925 – 935.

    MATH  Google Scholar 

  • Pukelsheim, F. (1993), Optimal Design of Experiments, Wiley, New York.

    MATH  Google Scholar 

  • Rao, C. R. (1971), “Estimation of variance and covariance components - MINQUE theory,” Journal of Multivariate Analysis, 1, 257–275.

    MathSciNet  Google Scholar 

  • Rao, C. R. (1972), “Estimation of variance and covariance components in linear models,” Journal of the American Statistical Association, 67, 112–115.

    MathSciNet  MATH  Google Scholar 

  • Raper, Simon (2019), “Turning points: Fisher’s random idea,” Significance Magazine, Royal Statistical Society, https://doi.org/10.1111/j.1740-9713.2019.01230.

  • Rasch, D., Pilz, J., Verdooren, R. and Gebhardt, A. (2011), Optimal Experimental Design with R, Chapman & Hall/CRC, Taylor and Francis Group, LLC, Boca Raton, FL 33487-2742.

  • Russell, E.J. (1913), Soil conditions and plant growth, second impression, Longmans, Green and Co, London, New York, Bombay and Calcutta.

  • Russell, Sir John (1926), “Field Experiments: How They are Made and What They are,” Journal of the Ministry of Agriculture of Great Britain, 32, 989–1001.

    Google Scholar 

  • Sanders, H. G. (1930), “A note on the value of uniformity trials for subsequent experiments,” Journal of Agricultural Science, Cambridge, 20, 63–73.

    Google Scholar 

  • Schwarzbach, E. (1984), “A new approach in the evaluation of field trials,” Vorträge für Pflanzenzüchtung, 6, 249–259.

    Google Scholar 

  • Sprengler, C. (1826), “Über Pflanzenhumus, Humusssäure und humussäure Salze, (Eng. About plant humus, humic acids and salt of humic acids),” Archiv für die Gesammte Naturlehre, 8, 145–220.

    Google Scholar 

  • Sprengler, C. (1828), “Von den Substanzen der Ackerkrume und des Untergrundes (Eng. About the substances in the plow layer and the subsoil),” Journal für Technische und Ökonomische Chemie, 2, 423–474, and 3, 42–99, 313–352 and 397–321.

  • Stevens, W. L. (1948), “Statistical analysis of a non-orthogonal tri-factorial experiment,” Biometrika, 35, 346-367.

    Google Scholar 

  • Student (1908), “The probable error of a mean,” Biometrika, 6, 1–25.

  • Student (1923), “On testing varieties of cereals,” Biometrika, 15, 271-293.

  • Student (1924), “Amendment and correction of “On testing varieties of cereals”,” Biometrika, 16, 411.

  • Tukey, J. W. (1953a), “The problem of multiple comparisons. Unpublished manuscript,” in The Collected Works of John W. Tukey VIII. Multiple Comparisons: 1948–1983, pp. 1–300. Chapman and Hall, New York.

  • Tukey, J. W. (1953b), “Multiple Comparisons,” Journal of the American Statistical Association, 48, 624–625.

    Google Scholar 

  • Van der Ploeg, R. R., Böhm, W. and Kirkham, M. B. (1999), “On the origin of the theory of mineral nutrition of plants and the law of the minimum,” Soil Science American Journal, 63, 1055–1062.

    Google Scholar 

  • Velazco, J. G., Rodriguez-Alvarez, M. X., Boer, M. P., Jordan, D. R., Eilers, P. H. C., Malosetti, M., Van Eeuwijk, F. A. (2017), “Modelling spatial trends in sorghum breeding trials using a two-dimensional P-spline mixed model,” Theoretical and Applied Genetics, 130, 1375–1372. https://doi.org/10.1007/s00122-017-2894-4. Epub 2017 Apr 3.

    Article  Google Scholar 

  • Verdooren, Rob, Soh, Aik Chin, Mayes, Sean and Roberts, Jeremy (2017), Chapter 12 Field Experimentation, in Aik Chin Soh, Sean Mayes and Jeremy A. Roberts (editors), Oil Palm Breeding, Genetics and Genomics, CRC Press, Taylor & Francis Group, Boca Raton, Fl. (USA).

  • Verdooren, L. R. (2019), “Use of Alpha-Designs in Oil Palm Breeding Trials,” American Journal of Theoretical and Applied Statistics, 8, 136 – 143. https://doi.org/10.11648/j.ijepe.20190804.12.

    Article  Google Scholar 

  • Vik, K. (1924), “Bedømmelse av feilen på forsøksfelter med og uten malestokk, (Eng. Assessment of the error on test fields with and without paint stick.),” Meldinger fra Norges Landbrukshøgskole, 4, 129-181.

    Google Scholar 

  • Wikipedia (2019a) : https://en.wikipedia.org/wiki/British_Agricultural_Revolution

  • Wikipedia (2019b) : https://en.wikipedia.org/wiki/Thomas_Coke,_1st_Earl_of_Leicester_(seventh_creation).

  • Wilkinson, G. N., Eckert, S.R., Hancock, T. W. and Mayo, O. (1983), “Nearest Neighbour (NN) analysis of field experiments (with discussion),” Journal of the Royal Statistical Society, Series B, 45, 151–211.

    MATH  Google Scholar 

  • Williams, E. R. (1977), “Iterative analysis of generalized lattice designs,” Australian and New Zealand Journal of Statistics, 19, 39–42.

    MathSciNet  MATH  Google Scholar 

  • Williams, E. R. (1985), “A criterion for the construction of optimal neighbour designs,” Journal of the Royal Statistical Society, Series B, 47, 489–497.

    MathSciNet  Google Scholar 

  • Williams, E. R. (1986), “A neighbour model for field experiments,” Biometrika, 73, 279–287.

    MathSciNet  Google Scholar 

  • Williams, E.R., John, J. A. and Whitaker, D. (2006), “Construction of resolvable spatial row-column designs,” Biometrics, 62, 103–108.

    MathSciNet  MATH  Google Scholar 

  • Williams, E.R., John, J.A. and Whitaker, D. (2014), “Construction of more flexible and efficient p-rep designs,” Australian and New Zealand Journal of Statistics, 56, 89-96.

    MathSciNet  MATH  Google Scholar 

  • Williams, E. R. and Piepho, H. P. (2019), “Error variance bias in neighbour balance and evenness of distribution designs,” Australian and New Zealand Journal of Statistics, 61, 466-473.

    MathSciNet  MATH  Google Scholar 

  • Wood, S.N. (2004), “Stable and efficient multiple smoothing parameter estimation for generalized additive models,” Journal of the American Statistical Association, 9, 673-686.

    MathSciNet  MATH  Google Scholar 

  • Wood, S. N. (2017), Generalized Additive Models: An Introduction with R, \(2^{\text{ nd }}\) Edition, Chapman and Hall/CRC Texts in Statistical Science, Boca Raton, FL.

  • Wood S.N., Scheipl, F. and Faraway, J.J. (2013/2011 online), “Straightforward intermediate rank tensor product smoothing in mixed models,” Statistics and Computing, 23(3), 341-360.

  • Yahuza, Ibrahim (2011), “Yield-density equations and their application for agronomic research: a review,” International Journal of Biosciences, 1(5), 1-17.

    Google Scholar 

  • Yates, F. (1933a), “The formation of Latin squares for use in field experiments,” Empire Journal of Experimental Agriculture, 1, 235–244.

  • Yates, F. (1933b), “The principles of orthogonality and confounding in replicated experiments – with seven text- figures,” Journal of Agricultural Science, Cambridge, 23, 108–195.

    Google Scholar 

  • Yates, F. (1935), “Complex experiments,” Supplement to the Journal of the Royal Statistical Society, 2, 181-247.

    Google Scholar 

  • Yates, F. (1937), The design and analysis of factorial experiments, Technical Communication no. 35 of the Commonwealth Bureau of Soils (alternatively attributed to the Imperial Bureau of Soil Science).

  • Yates, F. (1964), “Sir Ronald Fisher and the Design of Experiments,” Biometrics, 20, 307–321.

    Google Scholar 

  • Yates, F. and Mather, K. (1963), “Obituary: Ronald Aylmer Fisher, 1890–1962,” Biographical Memoirs of Fellows of the Royal Society. https://royalsocietypublishing.org/doi/10.1098/rsbm.1963.0006.

  • Youden, W. J. (1937), “Use of incomplete block replications in estimating tobacco mosaic virus,” Contributions. Boyce Thompson Institute for Plant Research, 9, 41–48.

    Google Scholar 

  • Youden, W. J. (1940), “Experimental designs to increase accuracy of greenhouse studies,” Contributions. Boyce Thompson Institute for Plant Research, 11, 219–228.

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Bert H. Janssen of the Wageningen University, the Netherlands, and Dr. Emlyn R. Williams of the Australian National University for their helpful comments of the first draft. The two reviewers of JABES are deeply thanked for the many helpful advices for the revised draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rob Verdooren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdooren, L.R. History of the Statistical Design of Agricultural Experiments. JABES 25, 457–486 (2020). https://doi.org/10.1007/s13253-020-00394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-020-00394-3

Keywords

Navigation