Skip to main content
Log in

Toward inertial sensing with a 23S positronium beam

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, we discuss the possibility of inertial sensing with positronium in the 23S metastable state for the measurement of optical dipole, relativistic and gravitational forces on a purely leptonic matter-antimatter system. Starting from the characteristics of an available 23S beam, we estimate the time necessary to measure accelerations ranging from ~105 m/s2 to 9.1 m/s2 with two different inertial sensitive devices: a classical moiré deflectometer and a Mach–Zehnder interferometer. The sensitivity of the Mach–Zehnder interferometer has been estimated to be several tens of times better than that of the moiré deflectometer, for the same measurement time. Different strategies to strengthen the 23S beam flux and to improve the sensitivity of the devices are proposed and analyzed. Among them, the most promising are reducing the divergence of the positronium beam through 2D laser Doppler cooling and coherent positronium Raman excitation from the ground state to the 23S level. If implemented, these improvements promise to result in the time required to measure an acceleration of 9.1 m/s2 of few weeks and 100 m/s2 of a few hours. Different detection schemes for resolving the fringe pattern shift generated on 23S positronium crossing the deflectometer/interferometer are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Deutsch, Phys. Rev. 82, 455 (1951)

    Article  ADS  Google Scholar 

  2. C.L. Wang, M.H. Weber, K.G. Lynn, K.P. Rodbell, Appl. Phys. Lett. 81, 4413 (2002)

    Article  ADS  Google Scholar 

  3. L. Liszkay, F. Guillemot, C. Corbel, J.P. Boilot, T. Gacoin, E. Barthel, P. Perez, M.F. Barthe, P. Desgardin, P. Crivelli, U. Gendotti, A. Rubbia, New J. Phys. 14, 065009 (2012)

    Article  ADS  Google Scholar 

  4. M. Zanatta, G. Baldi, R.S. Brusa, W. Egger, A. Fontana, E. Gilioli, S. Mariazzi, G. Monaco, L. Ravelli, F. Sacchetti, Phys. Rev. Lett. 112, 5 (2014)

    Article  Google Scholar 

  5. M.S. Fee, S. Chu, A.P. Mills Jr, R.J. Chichester, D.M. Zuckerman, E.D. Shaw, K. Danzmann, Phys. Rev. A 48, 192 (1993)

    Article  ADS  Google Scholar 

  6. S.G. Karshenboim, Phys. Rep. 422, 1 (2005)

    Article  ADS  Google Scholar 

  7. D.B. Cassidy, Eur. Phys. J. D 72, 53 (2018)

    Article  ADS  Google Scholar 

  8. A.P. Mills, Phys. Rev. Lett. 46, 717 (1981)

    Article  ADS  Google Scholar 

  9. Y. Nagashima, Phys. Rep. 545, 95 (2014)

    Article  ADS  Google Scholar 

  10. K. Michishio, T. Kanai, S. Kuma, T. Azuma, K. Wada, I. Mochizuki, T. Hyodo, A. Yagishita, Y. Nagashima, Nat. Commun. 7, 11060 (2016)

    Article  ADS  Google Scholar 

  11. D.B. Cassidy, A.P. Mills, Nature 449, 195 (2007)

    Article  ADS  Google Scholar 

  12. C.H. Storry, A. Speck, D. Sage, N. Guise, G. Gabrielse, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, H. Pittner, M. Herrmann, J. Walz, T.W. Hänsch, D. Comeau, E.A. Hessels, Phys. Rev. Lett. 93, 263401 (2004)

    Article  ADS  Google Scholar 

  13. M. Doser, et al., (AEgIS collaboration), Classical Quantum Gravity 29, 183009 (2012)

    Article  Google Scholar 

  14. P. Perez, Y. Sacquin, Classical Quantum Gravity 29, 184008 (2012)

    Article  ADS  Google Scholar 

  15. S. Aghion, et al., (AEgIS collaboration), Nat. Commun. 5, 4538 (2014)

    Article  ADS  Google Scholar 

  16. P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J.S. Wurtele, H. Müller, Phys. Rev. Lett. 112, 121102 (2014)

    Article  ADS  Google Scholar 

  17. A.P. Mills Jr, M. Leventhal, Nucl. Instrum. Methods Phys. Res. B 192, 102 (2002)

    Article  ADS  Google Scholar 

  18. M. Oberthaler, Nucl. Instrum. Methods Phys. Res. B 192, 129 (2002)

    Article  ADS  Google Scholar 

  19. J. Anandan, Phys. Lett. A 138, 347 (1989)

    Article  ADS  Google Scholar 

  20. R. Grimm, M. Weidemuller, Y.B. Ovchinnikov, Adv. At. Mol. Opt. Phy. 42, 95 (2000)

    Article  ADS  Google Scholar 

  21. D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr, Phys. Rev. Lett. 108, 043401 (2012)

    Article  ADS  Google Scholar 

  22. S. Aghion, et al., (AEgIS collaboration), Phys. Rev. A 94, 012507 (2016)

    Article  ADS  Google Scholar 

  23. A.C.L. Jones, T.H. Hisakado, H.J. Goldman, H.W.K. Tom, A.P. Mills, J. Phys. B: At. Mol. Opt. Phys. 49, 064006 (2016)

    Article  ADS  Google Scholar 

  24. A.M. Alonso, S.D. Hogan, D.B. Cassidy, Phys. Rev. A 95, 033408 (2017)

    Article  ADS  Google Scholar 

  25. S. Aghion, et al., (AEgIS collaboration), Phys. Rev. A 98, 013402 (2018)

    Article  ADS  Google Scholar 

  26. C. Amsler, et al., (AEgIS collaboration), Phys. Rev. A 99, 033405 (2019)

    Article  ADS  Google Scholar 

  27. M. Antonello, et al., (AEgIS collaboration), Phys. Rev. A 100, 063414 (2019)

    Article  ADS  Google Scholar 

  28. T.J. Murphy, C.M. Surko, Phys. Rev. A 46, 5696 (1992)

    Article  ADS  Google Scholar 

  29. J.R. Danielson, D.H.E. Dubin, R.G. Greaves, C.M. Surko, Rev. Mod. Phys. 87, 247 (2015)

    Article  ADS  Google Scholar 

  30. D.B. Cassidy, S.H.M. Deng, R.G. Greaves, A.P. Mills Jr, Rev. Sci. Instrum. 77, 073106 (2006)

    Article  ADS  Google Scholar 

  31. S. Aghion, et al., (AEgIS collaboration), Nucl. Instrum. Methods Phys. Res. B 362, 86 (2015)

    Article  ADS  Google Scholar 

  32. S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, L.R.S. Brusa, Phys. Rev. B 81, 235418 (2010)

    Article  ADS  Google Scholar 

  33. S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010)

    Article  ADS  Google Scholar 

  34. M.K. Oberthaler, S. Bernet, E.M. Rasel, J. Schmiedmayer, A. Zeilinger, Phys. Rev. A 54, 3165 (1996)

    Article  ADS  Google Scholar 

  35. P.H.M. Bräunig, Atom optical tools for antimatter experiments, Ph.D. thesis, Ruperto-Carola University of Heidelberg, Heidelberg, 2014

  36. A. Demetrio, S.R. Müller, P. Lansonneur, M.K. Oberthaler, Phys. Rev. A 96, 063604 (2017)

    Article  ADS  Google Scholar 

  37. R. Colella, A.W. Overhauser, S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975)

    Article  ADS  Google Scholar 

  38. J. Baudon, R. Mathevet, J. Robert, J. Phys. B: At. Mol. Opt. Phys. 32, R173 (1999)

    Article  ADS  Google Scholar 

  39. A. Miffre, M. Jacquey, M. Büchner, G. Trenec, J. Vigue, Phys. Scr. 74, C15 (2006)

    Article  Google Scholar 

  40. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  41. D.M. Giltner, R.W. McGowan, S.A. Lee, Phys. Rev. Lett. 75, 2638 (1995)

    Article  ADS  Google Scholar 

  42. C. Amsler, et al., (AEgIS collaboration), Nucl. Instrum. Methods Phys. Res., Sect. B 457, 44 (2019)

    Article  ADS  Google Scholar 

  43. N. Pacifico, et al., (AEgIS collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 831, 12 (2016)

    Article  ADS  Google Scholar 

  44. A.S. Tremsin, J.V. Vallerga, R.R. Raffanti, J. Instrum. 13, C11005 (2018)

    Article  Google Scholar 

  45. S. Aghion, et al., (AEgIS collaboration), J. Instrum. 8, P08013 (2013)

    Article  Google Scholar 

  46. C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, M. Arndt, Nat. Nanotechnol. 10, 845 (2015)

    Article  ADS  Google Scholar 

  47. A. Miffre, M. Jacquey, M. Büchner, G. Trenec, J. Vigue, Eur. Phys. J. D 33, 99 (2005)

    Article  ADS  Google Scholar 

  48. P. Kowalski, et al., (J-PET collaboration), Phys. Med. Biol. 63, 165008 (2018)

    Article  Google Scholar 

  49. H. Iijima, T. Asonuma, T. Hirose, M. Irako, T. Kumita, M. Kajita, K. Matsuzawa, K. Wada, Nucl. Instrum. Methods Phys. Res. Sect. A 455, 104 (2000)

    Article  ADS  Google Scholar 

  50. T. Kumita, T. Hirose, M. Irako, K. Kadoya, B. Matsumoto, K. Wada, N.N. Mondal, H. Yabu, K. Kobayashi, M. Kajita, Nucl. Instrum. Methods Phys. Res. Sect. B 192, 171 (2002)

    Article  ADS  Google Scholar 

  51. K. Shu, X. Fan, T. Yamazaki, T. Namba, S. Asai, K. Yoshioka, M. Kuwata-Gonokami, J. Phys. B: At. Mol. Opt. Phys. 49, 104001 (2016)

    Article  ADS  Google Scholar 

  52. P. Yzombard, Laser cooling and manipulation of antimatter in the AEgIS experiment, Ph.D. thesis, Université Paris-Saclay, Paris, 2016

  53. F. Guatieri, S. Mariazzi, L. Penasa, R.S. Brusa, G. Nebbia, C. Hugenschmidt, Phys. Rev. B, submitted (2020)

  54. M. Antonello, et al., (AEgIS collaboration), Phys. Rev. A, submitted (2019)

  55. C.J. Foot, in Atomic Physics (Oxford University Press, Oxford, 2005), Chap. 9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Mariazzi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariazzi, S., Caravita, R., Doser, M. et al. Toward inertial sensing with a 23S positronium beam. Eur. Phys. J. D 74, 79 (2020). https://doi.org/10.1140/epjd/e2020-100585-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100585-8

Keywords

Navigation