Skip to main content
Log in

Molecular Detection and Assessment of Risk Factors for Tick-Borne Diseases in Sheep and Goats from Turkey

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Tick-borne diseases mainly, theileriosis, babesiosis and anaplasmosis cause significant economic losses in livestock globally, including Turkey. The tick-borne pathogens of small ruminants in Turkey have been studied widely but information on molecular characterization and disease occurrence is still limited.

Methods

In this study, both microscopy and molecular detection and characterization for Theileria spp. Babesia ovis, Anaplasma ovis and Anaplasma phagocytophilum was conducted. A total of 133 blood samples of tick-infested small ruminants (105 sheep and 28 goats) were collected from Turkey: half of the animals had clinical signs of tick-borne disease infections.

Results

Using PCR assays and microscopy, 90.2% and 45.1% of the samples were positive for at least one pathogen, respectively. Overall, the infection rates of A. phagocytophilum, B. ovis, A. ovis, Theileria spp. were 66.7%, 62.4%, 46.6% and 7.0%, respectively. Fifty-nine of the 133 (44.4%) samples were co-infected with two or more pathogens. Sex, season and B. ovis positivity were significant risk factors for occurrence of clinical disease. Sequence and phylogenetic analysis based on B. ovis 18S small subunit rRNA, A. ovis major surface protein 4, Theileria spp. 18S rRNA and A. phagocytophilum 16S rRNA genes showed that the isolates in this study clustered together in well-supported clades with those previously collected from Turkey and other countries.

Conclusions

The study shows B. ovis as the most significant pathogen associated with clinical and fatal cases in small ruminants from Turkey. Female sex and summer season are associated with increased risk of the disease. This study shows high infection rates with the pathogens among small ruminants including A. phagocytophilum which has veterinary and public health importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodríguez Vivas, RI, Ojeda-Chi, MM, Pérez-Cogollo, LC, Rosado-Aguilar, JA (2010) Epidemiology and control of Rhipicephalus (Boophilus) microplus in Mexico. Chapter 33. In: Quiroz RH, Figueroa CJA López AME (eds) Epidemiology of parasitic diseases in domestic animals , edited by AMPAVE. pp. 477–504. ISBN: 978-607-00-4015-3

  2. Eskezia B, Desta A (2016) Review on the impact of ticks on livestock health and productivity. J Biol Agric Healthc 6:1–7 (ISSN 2224-3208 (Paper) ISSN 2225-093X)

    Google Scholar 

  3. Habela M, Fruto JM, Moreno A, Gragera-Slikker A (2003) Tick ​​infestation: repercussions and control and control plans in small ruminant farms. Cattle World 156:44–50

    Google Scholar 

  4. Seyoum Z, Tadesse T, Addisu A (2015) Ectoparasites Prevalence in Small Ruminants in and around Sekela, Amhara Regional State. Northwest Ethiopia J Vet Med. https://doi.org/10.1155/2015/216085

    Article  PubMed  Google Scholar 

  5. Bekker CP, De Vos S, Taoufik A, Sparagano OA, Jongejan F (2002) Simultaneous detection of Anaplasma and Ehrlichia species in ruminants and detection of Ehrlichia ruminantium in Amblyomma variegatum ticks by reverse line blot hybridization. Vet Microbiol 89:223–238. https://doi.org/10.1016/s0378-1135(02)00179-7

    Article  CAS  PubMed  Google Scholar 

  6. Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and HGE agent as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165. https://doi.org/10.1099/00207713-51-6-2145

    Article  CAS  PubMed  Google Scholar 

  7. Schnittger L, Yin H, Gubbels MJ, Beyer D, Niemann S, Jongejan F, Ahmed JS (2003) Phylogeny of sheep and goat Theileria and Babesia parasites. Parasitol Res 91:398–406. https://doi.org/10.1007/s00436-003-0979-2

    Article  PubMed  Google Scholar 

  8. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:4S3–S14. https://doi.org/10.1017/s0031182004005967

    Article  Google Scholar 

  9. Ijaz M, Rehman A, Ali MM, Umair M, Khalid S, Mehmood K, Hanif A (2013) Clinico-epidemiology and therapeutical trials on babesiosis in sheep and goats in Lahore, Pakistan. J Anim Plant Sci 23:666–669 (ISSN: 1018-7081)

    Google Scholar 

  10. Sevinc F, Sevinc M, Ekici OD, Yildiz R, Isik N, Aydogdu U (2013) Babesia ovis infections: Detailed clinical and laboratory observations in the pre-and post-treatment periods of 97 field cases. Vet Parasitol 191:35–43. https://doi.org/10.1016/j.vetpar.2012.07.025

    Article  PubMed  Google Scholar 

  11. Uilenberg G (2006) Babesia—a historical overview. Vet Parasitol 138:3–10. https://doi.org/10.1016/j.vetpar.2006.01.035

    Article  PubMed  Google Scholar 

  12. Barry DM, Van Niekerk CH (1990) Anaplasmosis in improved Boer goats in South Africa artificially infected with Anaplasma ovis. Small Rumin Res 3:191–197. https://doi.org/10.1016/0921-4488(90)90093-l

    Article  Google Scholar 

  13. Durrani AZ, Younus M, Kamal N, Mehmood N, Shakoori AR (2011) Prevalence of ovine Theileria species in district Lahore. Pak J Zool 43:57–60

    Google Scholar 

  14. Friedhoff KT (1997) Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp. Parassitologia 39:99–109 PMID: 9530692

    CAS  PubMed  Google Scholar 

  15. Renneker S, Abdo J, Salih DEA, Karagenç T, Bilgiç H, Torina A, Seitzer U (2013) Can Anaplasma ovis in small ruminants be neglected any longer? Transbound Emerg Dis 60:105–112. https://doi.org/10.1111/tbed.12149

    Article  PubMed  Google Scholar 

  16. Grøva L, Olesen I, Steinshamn H, Stuen S (2011) Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth. Acta Vet Scand 53:30. https://doi.org/10.1186/1751-0147-53-30

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stuen S, Kjølleberg K (2000) An investigation of lamb deaths on tick pastures in Norway. In: Kazimìnovà M, Labuda M, Nuttall PA (eds) Proceedings of the third International Conference on Ticks and Tick-borne pathogens: Into the 21st century. Slovak Academy of Sciences, pp 111–115. Bratislava. ISBN: 8088780357 9788088780359.

  18. Dumler JS, Madigan JE, Pusterla N, Bakken JS (2007) Ehrlichioses in humans: epidemiology, clinical presentation, diagnosis, and treatment. Clin Infect Dis 45:S45–S51. https://doi.org/10.1086/518146

    Article  PubMed  Google Scholar 

  19. Gürsoy O (2006) Economics and profitability of sheep and goat production in Turkey under new support regimes and market conditions. Small Rumin Res 62:181–191. https://doi.org/10.1016/j.smallrumres.2005.08.013

    Article  Google Scholar 

  20. Sevinc F, Xuan X (2015) Major tick-borne parasitic diseases of animals: a frame of references in Turkey. Eurasian J Vet Sci. https://doi.org/10.15312/eurasianjvetsci.2015310969

    Article  Google Scholar 

  21. Aktas M, Altay K, Dumanli N (2011) Molecular detection and identification of Anaplasma and Ehrlichia species in cattle from Turkey. Ticks Tick Borne Dis 2:62–65. https://doi.org/10.1016/j.ttbdis.2010.11.002

    Article  PubMed  Google Scholar 

  22. Aktas M, Altay K, Dumanli N, Kalkan A (2009) Molecular detection and identification of Ehrlichia and Anaplasma species in ixodid ticks. Parasitol Res 104:1243. https://doi.org/10.1007/s00436-009-1377-1

    Article  PubMed  Google Scholar 

  23. Aktas M, Vatansever Z, Altay K, Aydin MF, Dumanli N (2010) Molecular evidence for Anaplasma phagocytophilum in Ixodes ricinus from Turkey. Trans R Soc Trop Med Hyg 104:10–15. https://doi.org/10.1016/j.trstmh.2009.07.025

    Article  CAS  PubMed  Google Scholar 

  24. Aktaş M, Altay K, Dumanli N (2005) Survey of Theileria parasites of sheep in eastern Turkey using polymerase chain reaction. Small Rumin Res 60:289–293. https://doi.org/10.1016/j.smallrumres.2005.01.002

    Article  Google Scholar 

  25. Altay K, Aktas M, Dumanli N, Aydin MF (2008) Evaluation of a PCR and comparison with RLB for detection and differentiation of Theileria sp. MK and other Theileria and Babesia species of small ruminants. Parasitol Res 103:319. https://doi.org/10.1007/s00436-008-0973-9

    Article  PubMed  Google Scholar 

  26. Altay K, Dumanli N, Aktas M (2007) Molecular identification, genetic diversity and distribution of Theileria and Babesia species infecting small ruminants. Vet Parasitol 147:161–165. https://doi.org/10.1016/j.vetpar.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  27. Ekici OD, Sevinc F, Isik N (2012) Instability of ovine babesiosis in an endemic area in Turkey. Vet Parasitol 188:372–375. https://doi.org/10.1016/j.vetpar.2012.04.001

    Article  PubMed  Google Scholar 

  28. Gokce H, Genc O, Akca A, Vatansever Z, Unver A, Erdogan H (2008) Molecular and serological evidence of Anaplasma phagocytophilum infection of farm animals in the Black Sea Region of Turkey. Acta Vet Hung 56:281–292. https://doi.org/10.1556/avet.56.2008.3.2

    Article  CAS  PubMed  Google Scholar 

  29. Inci A, Ica A, Yildirim A, Düzlü Ö (2010) Identification of Babesia and Theileria species in small ruminants in Central Anatolia (Turkey) via reverse line blotting. Turk J Vet Anim Sci 34:205–210. https://doi.org/10.3906/vet-0902-15

    Article  CAS  Google Scholar 

  30. Aktaş M, Altay K, Dumanlı N (2005) Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Vet Parasitol 133:277–281. https://doi.org/10.1016/j.vetpar.2005.05.057

    Article  CAS  PubMed  Google Scholar 

  31. Zhou M, Cao S, Sevinc F, Sevinc M, Ceylan O, Ekici S, Iguchi A (2017) Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey. Ticks Tick Borne Dis 8:246–252. https://doi.org/10.1016/j.ttbdis.2016.11.006

    Article  PubMed  Google Scholar 

  32. Altay K, Dumanli N, Aktas M, Ozubek S (2014) Survey of Anaplasma infections in small ruminants from East part of Turkey. Kafkas Univ Vet Fak Derg 20:1–4. https://doi.org/10.9775/kvfd.2013.9189

    Article  Google Scholar 

  33. Altay K, Dumanli N, Holman PJ, Aktas M (2005) Detection of Theileria ovis in naturally infected sheep by nested PCR. Vet Parasitol 127:99–104. https://doi.org/10.1016/j.vetpar.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  34. Aydin MF, Aktas M, Dumanli N (2013) Molecular identification of Theileria and Babesia in sheep and goats in the Black Sea Region in Turkey. Parasitol Res 112:2817–2824. https://doi.org/10.1007/s00436-013-3452-x

    Article  PubMed  Google Scholar 

  35. Bilgic HB, Bakırcı S, Kose O, Unlu AH, Hacılarlıoglu S, Eren H, Karagenc T (2017) Prevalence of tick-borne haemoparasites in small ruminants in Turkey and diagnostic sensitivity of single-PCR and RLB. Parasit Vectors 10:211. https://doi.org/10.1186/s13071-017-2151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ozubek S, Aktas M (2016) Molecular and parasitological survey of ovine piroplasmosis, including the first report of Theileria annulata (Apicomplexa: Theileridae) in sheep and goats from Turkey. J Med Entomol 54:212–220. https://doi.org/10.1093/jme/tjw134

    Article  CAS  PubMed  Google Scholar 

  37. Güneş T, Poyraz Ö, Ataş M, Turgut NH (2011) The seroprevalence of Anaplasma phagocytophilum in humans from two different climatic regions of Turkey and its co-seroprevalence rate with Borrelia burgdorferi. Turk J Med Sci 41:903–908. https://doi.org/10.3906/sag-1009-1148

    Article  Google Scholar 

  38. Aktas M, Altay K, Dumanli N (2007) Determination of prevalence and risk factors for infection with Babesia ovis in small ruminants from Turkey by polymerase chain reaction. Parasitol Res 100:797–802. https://doi.org/10.1007/s00436-006-0345-2

    Article  PubMed  Google Scholar 

  39. Calder JA, Reddy GR, Chieves L, Courtney CH, Littell R, Livengood JR, Dame JB (1996) Monitoring Babesia bovis infections in cattle by using PCR-based tests. J Clin Microbiol 34:2748–2755. https://doi.org/10.1128/jcm.34.11.2748-2755.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Esmaeilnejad B, Tavassoli M, Asri-Rezaei S, Dalir-Naghadeh B, Mardani K, Golabi M, Jalilzadeh G (2015) Determination of prevalence and risk factors of infection with Babesia ovis in small ruminants from West Azerbaijan Province, Iran by polymerase chain reaction. J Arthropod Borne Dis 9:246–252 PMID: 26623436

    PubMed  PubMed Central  Google Scholar 

  41. Gebrekidan H, Hailu A, Kassahun A, Rohoušová I, Maia C, Talmi-Frank D, Baneth G (2014) Theileria infection in domestic ruminants in northern Ethiopia. Vet Parasitol 200:31–38. https://doi.org/10.1016/j.vetpar.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  42. Guo S, Yuan Z, Wu G, Wang W, Ma D, Du H (2002) Epidemiology of ovine theileriosis in Ganan region, Gansu Province, China. Parasitol Res 88:S36–S37. https://doi.org/10.1007/s00436-001-0568-1

    Article  PubMed  Google Scholar 

  43. Lee SH, Mossaad E, Ibrahim AM, Ismail AA, Moumouni PFA, Liu M, Efstratiou A (2018) Detection and molecular characterization of tick-borne pathogens infecting sheep and goats in Blue Nile and West Kordofan states in Sudan. Ticks Tick Borne Dis 9:598–604. https://doi.org/10.1016/j.ttbdis.2018.01.014

    Article  PubMed  Google Scholar 

  44. Rjeibi MR, Gharbi M, Mhadhbi M, Mabrouk W, Ayari B, Nasfi I, Darghouth MA (2014) Prevalence of piroplasms in small ruminants in North-West Tunisia and the first genetic characterisation of Babesia ovis in Africa. Parasite 21:23. https://doi.org/10.1051/parasite/2014025

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sevinc F, Zhou M, Cao S, Ceylan O, Aydin MF, Sevinc M, Xuan X (2018) Haemoparasitic agents associated with ovine babesiosis: A possible negative interaction between Babesia ovis and Theileria ovis. Vet Parasitol 252:143–147. https://doi.org/10.1016/j.vetpar.2018.02.013

    Article  PubMed  Google Scholar 

  46. Alessandra T, Santo C (2012) Tick-borne diseases in sheep and goats: clinical and diagnostic aspects. Small Rumin Res 106:S6–S11. https://doi.org/10.1016/j.smallrumres.2012.04.026

    Article  Google Scholar 

  47. Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Brayton KA (2019) The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics 20:69. https://doi.org/10.1186/s12864-018-5374-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kabir MHB, Mondal MMH, Eliyas M, Mannan MA, Hashem MA, Debnath NC, Elahi MF (2011) An epidemiological survey on investigation of tick infestation in cattle at Chittagong District, Bangladesh. Afr J Microbiol Res 5:346–352. https://doi.org/10.3329/bjas.v41i1.11973

    Article  Google Scholar 

  49. Shabbir MZ, Khan JA (2010) Prevalence of theileriosis in sheep in Okara district, Pakistan. Pak J Zool 42:639–643

    Google Scholar 

  50. Belkahia H, Said MB, Alberti A, Abdi K, Issaoui Z, Hattab D, Messadi L (2015) First molecular survey and novel genetic variants’ identification of Anaplasma marginale, A. centrale and A. bovis in cattle from Tunisia. Infect Genet Evol 34:361–371. https://doi.org/10.1016/j.meegid.2015.06.017

    Article  PubMed  Google Scholar 

  51. Ahmed J, Alp H, Aksin M, Seitzer U (2007) Current status of ticks in Asia. J Parasitol Res 101:159–162. https://doi.org/10.1007/s00436-007-0696-3

    Article  Google Scholar 

  52. Cetinkaya H, Matur E, Akyazi I, Ekiz EE, Aydin L, Toparlak M (2016) Serological and molecular investigation of Ehrlichia. spp. and Anaplasma. spp. in ticks and blood of dogs, in the Thrace Region of Turkey. Ticks Tick Borne Dis 7:706–714. https://doi.org/10.1016/j.ttbdis.2016.02.021

    Article  PubMed  Google Scholar 

  53. Sen E, Uchishima Y, Okamoto Y, Fukui T, Kadosaka T, Ohashi N, Masuzawa T (2011) Molecular detection of Anaplasma phagocytophilum and Borrelia burgdorferi in Ixodes ricinus ticks from Istanbul metropolitan area and rural Trakya (Thrace) region of north-western Turkey. Ticks Tick Borne Dis 2:94–98

    Article  Google Scholar 

  54. Yang J, Liu Z, Niu Q, Liu J, Xie J, Chen Q, Yin H (2016) Evaluation of different nested PCRs for detection of Anaplasma phagocytophilum in ruminants and ticks. BMC Vet Res 12:35. https://doi.org/10.1186/s12917-016-0663-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stuen S, Bergström K, Palmer E (2002) Reduced weight gain due to subclinical Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) infection. Exp Appl Acarol 28:209–215. https://doi.org/10.1007/978-94-017-3526-1_20

    Article  PubMed  Google Scholar 

  56. Woldehiwet Z (2008) Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J. https://doi.org/10.1016/j.tvjl.2006.11.019

    Article  PubMed  Google Scholar 

  57. Aktas M, Özübek S (2015) Bovine anaplasmosis in Turkey: first laboratory confirmed clinical cases caused by Anaplasma phagocytophilum. Vet Microbiol 178:246–251

    Article  Google Scholar 

  58. Stuen S, Granquist EG, Silaghi C (2013) Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 3:31. https://doi.org/10.3389/fcimb.2013.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aktas M (2014) A survey of ixodid tick species and molecular identification of tick-borne pathogens. Vet Parasitol 200:276–283. https://doi.org/10.1016/j.vetpar.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  60. Meyer A, Todt C, Mikkelsen NT, Lieb B (2010) Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC Evol Biol 10:70. https://doi.org/10.1186/1471-2148-10-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090. https://doi.org/10.1073/pnas.74.11.5088

    Article  CAS  PubMed  Google Scholar 

  62. Aktas M, Altay K, Dumanli N (2006) PCR-based detection of Theileria ovis in Rhipicephalus bursa adult ticks. Vet Parasitol 140:259–263. https://doi.org/10.1016/j.vetpar.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  63. Torina A, Agnone A, Blanda V, Alongi A, D’Agostino R, Caracappa S, de la Fuente J (2012) Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks Tick Borne Dis 3:283–287. https://doi.org/10.1016/j.ttbdis.2012.10.033

    Article  PubMed  Google Scholar 

  64. Barlough JE, Madigan JE, DeRock E, Dumler JS, Bakken JS (1995) Protection against Ehrlichia equi is conferred by prior infection with the human granulocytotropic ehrlichia (HGE agent). J Clin Microbiol 33:3333–3334. https://doi.org/10.1128/jcm.33.12.3333-3334.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cao S, Zhang S, Jia L, Xue S, Yu L, Kamyingkird K, Terkawi MA (2013) Molecular detection of Theileria species in sheep from northern China. J Vet Med Sci. https://doi.org/10.1292/jvms.13-0028

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the people who were involved in making this study a success. This study was supported by Grant-in-Aid from Scientific Research (18kk0188) from Ministry of Education, Culture, Sports, Science, and the Japanese Society for the Promotion of Science Core-to-Core Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ferda Sevinc or Xuenan Xuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedicto, B., Ceylan, O., Moumouni, P.F.A. et al. Molecular Detection and Assessment of Risk Factors for Tick-Borne Diseases in Sheep and Goats from Turkey. Acta Parasit. 65, 723–732 (2020). https://doi.org/10.2478/s11686-020-00207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-020-00207-0

Keywords

Navigation