Skip to main content
Log in

Generalized Chou-Yang Model and Hadronic Radii

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Generalized Chou-Yang model (GCYM) predicts electromagnetic form factors of several hadrons with varying magnitude of strangeness. By using these form factors, the root mean square (RMS) radii of the hadrons such as (π, p, ϕ, Λ, Σ+, Σand Ω)are computed. It is found that there is consistency among the predicted RMS radii of pion and proton by GCYM (and other models) and experimental results. For all hadrons experimental results are not available. Also we find that results of GCYM and from other models are somewhat inconsistent for hadrons other than pion and proton. Though GCYM and other models do not agree for most of the hadrons but they have one similarity that the computed RMS radii seem decreasing with the increase in the strangeness level, separately for mesons as well as for baryons. The experimental results of hadrons other than pion and proton are needed to check the suitability of GCYM and other models as well as in probing the trend of decreasing radii with increase in strangeness content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. TOTEM Experiment, http://home.web.cern.ch/about/experiments/totem, Accessed; September 20, 2018

  2. Dremin, I.M.: Elastic scattering of hadrons. Physics-Uspekhi. 56, 3–28 (2013)

    Article  ADS  Google Scholar 

  3. Meittinen H.I.: Geometrical Description of Hadronic Collisions, Acta Phys. Pol. 4 (1975)

  4. Kuroda M. & Miyazaya H.: High Energy Scattering and Hadron Structure, Prog.Theor. Phy., 50 (1973)

  5. Zahra S.: Geometrical Picture, QCD and Radii of Hadrons/Light Nuclei (A PhD Thesis) available at http://prr.hec.gov.pk/jspui/bitstream/123456789/2206/2/1646S.pdf, Accessed; May 20, 2018

  6. Horn, T., et al.: Determination of the Pion Charge Form Factor at Q2=1.60 and 2.45 (GeV/c)2. Phy. Rev. Lett. 97, 192001 (2006)

    Article  ADS  Google Scholar 

  7. Eschrichi, I., et al.: Measurement of the ∑− Charge Radius by ∑− Electron Elastic Scattering. Phys. Lett. B. 522, 233–239 (2001)

    Article  ADS  Google Scholar 

  8. Schuler, G.A., Sjostrand, T.: Hadronic diffractive cross sections and the rise of the Total cross section. Phys.Rev. D. 49, 2257–2267 (1993)

    Article  ADS  Google Scholar 

  9. Castaldi, R., & Sanguinetti, G.: Elastic Scattering and Total Cross-Section at Very High Energies, CERN-EP/85–36 (1985)

  10. Shukla S.: High Energy Elastic and Diffractive Scattering, FERMILAB-CONF-92-232

  11. Leader E. & Mao U.: The Chou-Yang Hypothesis-a Critical Assessment, FERMILAB-Pub-75/77-THY (1975)

  12. Chou, T.T., Yang, C.N.: Model of elastic high-energy scattering. Phys. Rev. 170, 1591 (1968)

    Article  ADS  Google Scholar 

  13. Akerlof C.W., Kotthaus R., Loveless R. L. & Meyer D. I.: Observation of Structure in Elastic PP Scattering at 100 GeV/c and 200 GeV/c, Phy. Lett. B 59 (1975)

  14. Povh B.: Hadron interactions-hadron sizes, arXiv:hep-ph/9806379 v1, June 16, 1998

  15. Saleem, M., Aleem, F., Rashid, H.: Generalized Chou-Yang model and meson-meson elastic scattering at high energies. Int. J. Mod. Phys. A. 04, 1747 (1989)

    Article  ADS  Google Scholar 

  16. Glauber, R.C., Velasco, J.: Multiple diffraction theory of p-p scattering at 546 GeV. Phys. Lett. B. 147, 380 (1984)

    Article  ADS  Google Scholar 

  17. Borisyuk, D.: Proton charge and magnetic RMS radii from the elastic ep scattering data. Nuc. Phy. A. 843, 59–67 (2010)

    Article  ADS  Google Scholar 

  18. Walker, R.C., et al.: Measurements of the proton elastic form factors for 1≤Q2≤3 (GeV/c)2 at SLAC. Phys. Rev. D. 49, 5671 (1994)

    Article  ADS  Google Scholar 

  19. Bosted, P.E., et al.: Measurements of the electric and magnetic form factors of the proton from Q2=1.75 to 8.83 (GeV/c)2. Phys. Rev. Lett. 68, 3841 (1992)

    Article  ADS  Google Scholar 

  20. Bebek, C.J., et al.: Electroproduction of single pions at low ε and a measurement of the pion form factor up to Q2=10 GeV2. Phys. Rev. D. 17, 1693 (1978)

    Article  ADS  Google Scholar 

  21. Dally, E.B., et al.: Elastic-Scattering Measurement of the Negative-Pion Radius. Phys. Rev. Lett. 48, 375, (1982)

  22. Volmer, J., et al.: Measurement of the Charged Pion Electromagnetic Form Factor. Phys. Rev. Lett. 86, 1713 (2001)

    Article  ADS  Google Scholar 

  23. Horn, T., et al.: Determination of the Pion Charge Form Factor at Q2=1.60 and 2.45 (GeV/c)2. Phys. Rev. Lett. 97, 192001 (2006)

    Article  ADS  Google Scholar 

  24. Van Cauteren T et al.: Electric and magnetic form factors of strange baryons. Eur. Phys. J. A 20, 283–291 (2004)

  25. Kubis, B., Meissner, U.G.: Baryon form factors in chiral perturbation theory. Eur. Phys. J. C. 18, 747–756 (2001)

    Article  ADS  Google Scholar 

  26. Alexandrou, C., et al.: Electromagnetic form factors of the Ω in lattice QCD. Phys Rev. D. 82, 03454 (2010)

    Article  Google Scholar 

  27. Liu, Y.L., Huang, M.Q.: Electromagnetic form factors of the Λ and Σ baryons in an alternative baryonic current approach. Phys. Rev D. 79, 114031 (2009)

    Article  ADS  Google Scholar 

  28. Povh B.: Hypron radii, arxiv:hep-ph/9908233v1, Aug 3, 1999

  29. Large Hadron Collider, http://home.web.cern.ch/topics/large-hadron-collider, Accessed; September 20, 2018

  30. Saleem, M., Aleem, F., Azhar, I.A.: Generalized Chou-Yang Model for \( p\left(\overline{p}\right)p \)and \( \varLambda \left(\overline{\varLambda}\right)p \)Elastic Scattering at High Energies. Euro. phys. Lett. 6, 201 (1988)

    Article  ADS  Google Scholar 

  31. Amendolia, S.R., et al.: A measurement of the space-like pion electromagnetic form factor. Nucl. Phys. B. 277, 168–196 (1986)

    Article  ADS  Google Scholar 

  32. Simon, G.G., Schmitt, C., Borkowski, F., Walther, V.H.: Absolute electron-proton cross sections at low momentum transfer measured with a high pressure gas target system. Nucl. Phys. A. 333, 381–391 (1980)

    Article  ADS  Google Scholar 

  33. Yasser, A.M., Awad, A., Ibraheem, A.A., Moustafa, E., Hashem, E.: On the Root Mean Square Radius of the Deutron. J. Theor. Comput. Stud. 8, 0107 (2009)

    Google Scholar 

  34. Heyn, M.F., Lang, C.B.: Analysis of the pion form factor in the space-like and time-like region, Z. Phys. C. Particles and fields. 7, 169–181 (1981)

    Article  Google Scholar 

  35. Povh, B., Hufner, J.: Systematics of strong interaction radii for hadrons. Phys. Lett. B. 245, 653–657 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially based upon PhD thesis work of Ms. Sarwat Zahra, sponsored by Higher Education Commission (HEC), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talab Hussain.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, S., Rashid, H., Fazal-e-Aleem et al. Generalized Chou-Yang Model and Hadronic Radii. Int J Theor Phys 59, 1547–1552 (2020). https://doi.org/10.1007/s10773-020-04422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04422-3

Keywords

Navigation