Skip to main content
Log in

Perforated serpentine membrane with AlN as dielectric material shunt capacitive RF MEMS switch fabrication and characterization

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this communication, we have designed, simulated, performance improved, fabricated and characterized a shunt capacitive RF MEMS switch with perforated serpentine membrane (Au). Fabrication is done using surface micromachining with four masks. AlN dielectric material of 50 nm thickness is offering high isolation of − 58.5 dB at 31.5 GHz, and incorporation of perforation to the membrane the switch insertion loss is very low i.e., − 0.4 dB. The perforated serpentine membrane with non-uniform meanders of 500 nm thickness using Au material is helped to reduce the actuation voltage, the fabricated switch is requiring 4.5 V actuation voltage. DC sputtering PVD is used to deposit metal (Au) and dielectric (AlN) thin Films. S1813 photoresist is used as a sacrificial layer and the membrane structure is released using piranha, IPA and critical point drying (Pressure 1260 Psi, Temperature 31 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Agarwal S, Kashyap R, Guha K, Baishya S (2016a) Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Super Lattices Microstruct. https://doi.org/10.1016/j.spmi.2016.10.022

    Article  Google Scholar 

  • Agarwal S, Kashyap R, Guha K, Baishya S (2016b) Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Super Lattices Microstruct. https://doi.org/10.1016/j.spmi.2016.10.022

    Article  Google Scholar 

  • Alastalo AT, Mattila T, Seppä H (2003) Analysis of a MEMS transmission line. IEEE Trans Microw Theory Tech 51(8):1977–1981

    Article  Google Scholar 

  • Badía MF-B, Buitrago E, Ionescu AM (2012) RF MEMS shunt capacitive switches using AlN compared to Si3N4 dielectric. J Micro Electro Mech Syst 21(5):1229–1240

    Article  Google Scholar 

  • Chawla P, Khanna R (2014) Design, analysis and comparison of various MEMS switches for reconfigurable planar antenna. Acta Polytech Hung 11:21–40

    Google Scholar 

  • Demirel K, Yazgan E, Demir S, Akın T (2016) A new temperature-tolerant RF MEMS switch structure design and fabrication for Ka-band. J Microelectromech Syst 25(1):60–68

    Article  Google Scholar 

  • Dragoman M, Aldrigo M, Adam G (2017) Phased antenna arrays based on non-volatile resistive switches. IET Microw Antennas Propag 11(8):1169–1173. https://doi.org/10.1049/iet-map.2016.0974

    Article  Google Scholar 

  • Dussopt L, Rebeiz GM (2003) Intermodulation distortion and power handling in RF mems switches, varactors, and tunable filters. IEEE Trans Microw Theory Tech 51(4):1247–1256

    Article  Google Scholar 

  • Fouladi S, Mansour RR (2010) Capacitive RF MEMS switches fabricated in standard 0.35-μm CMOS technology. IEEE Trans Microw Theory Tech 58(2):478–486

    Article  Google Scholar 

  • Guha K, Kumar M, Parmar A, Baishya S (2016) Performance analysis of RF MEMS capacitive switch with non-uniform meandering technique. Microsyst Technol 22:2633–2640

    Article  Google Scholar 

  • Guha K, Laskar NM, Gogoi HJ, Borah AK, Baishnab KL, Baishya S (2017) Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect. Solid State Electron 137:85–94

    Article  Google Scholar 

  • Hijazi YS, Vlasov YA, Larkins GL Jr (2003a) Design of a superconducting MEM shunt switch for RF applications. IEEE Trans Appl Supercond 13(2):696–699

    Article  Google Scholar 

  • Hijazi YS, Hanna D, Fairweather D, Vlasov YA, Larkins GL Jr (2003b) Fabrication of a superconducting mem shunt switch for RF applications. IEEE Trans Appl Supercond 13(2):700–703

    Article  Google Scholar 

  • Jensen BD, Saitou K, Volakis JL, Kurabayashi K (2003) Fully integrated electrothermal multidomain modeling of RF MEMS switches. IEEE Microw Wirel Compon Lett 13(9):364–366

    Article  Google Scholar 

  • Kolis P, Bajaj AK, Koslowski M (2017) Quantification of uncertainty in creep failure of RF-MEMS Switches. J Microelectromech Syst 26(1):1–12

    Article  Google Scholar 

  • Koutsoureli M, Michalas L, Papandreou E, Papaioannou G (2017) Dielectric charging asymmetry in SiN films used in RF MEMS capacitive switches. IEEE Trans Device Mater Reliab 17(1):1

    Article  Google Scholar 

  • Li M, Zhao J, You Z, Zhao G (2016a) Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid State Electron. https://doi.org/10.1016/j.sse.2016.10.004

    Article  Google Scholar 

  • Li M, Zhao J, You Z, Zhao G (2016b) Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid State Electron. https://doi.org/10.1016/j.sse.2016.10.004

    Article  Google Scholar 

  • Liu Y, Bey Y, Liu X (2016) Extension of the hot-switching reliability of RF-MEMS switches using a series contact protection technique. IEEE Trans Microw Theory Tech 64(10):3151–3162

    Article  Google Scholar 

  • Liu Y, Bey Y, Liu X (2017) High-power high-isolation RF-MEMS switches with enhanced hot-switching reliability using a shunt protection technique. IEEE Trans Microw Theory Tech 65(9):1–12

    Article  Google Scholar 

  • Mardivirin D, Pothier A, Crunteanu A, Vialle B, Blondy P (2009) Charging in dielectricless capacitive RF-MEMS switches. IEEE Trans Microw Theory Tech 57(1):231–236

    Article  Google Scholar 

  • Mercado LL, Lee T-YT, Kuo S-M, Hause V, Amrine C (2003) Thermal solutions for discrete and wafer-level RF MEMS switch. IEEE Trans Adv Packag 26(3):318–326

    Article  Google Scholar 

  • Molaei S, Ganji BA (2016) Design and simulation of a novel RF MEMS shunt capacitive switch with low actuation voltage and high isolation. Microsyst Technol. https://doi.org/10.1007/s00542-016-2923-2

    Article  Google Scholar 

  • Mulloni V, Margesin B, Farinelli P, Marcelli R, Lucibello A, De Angelis G (2015) Cycling reliability of RF-MEMS switches with Gold-Platinum multilayers as contact material. Microsyst Technol 23:3843–3850. https://doi.org/10.1007/s00542-015-2782-2

    Article  Google Scholar 

  • Nejad AG, Hasani JY (2016) Effects of contact roughness and trapped free space on characteristics of RF-MEMS capacitive shunt switches. Can J Electr Comput Eng 39(2):132–140

    Article  Google Scholar 

  • Ok SJ, Kim C, Baldwin DF (2003) High density, high aspect ratio through-wafer electrical interconnect vias for mems packaging. IEEE Trans Adv Packag 26(3):302–309

    Article  Google Scholar 

  • Pal J, Zhu Y, Lu J, Dao D, Khan F (2016) High power and reliable SPST/SP3T RF MEMS switches for wireless applications. IEEE Electron Device Lett 37(9):1

    Article  Google Scholar 

  • Park J, Shim ES, Choi W, Kim Y, Kwon Y, Cho D (2009) A non-contact-type RF MEMS switch for 24-GHz radar applications. J Micro Electro Mech Syst 18(1):163–173

    Article  Google Scholar 

  • Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2003) Electromechanical considerations in developing low-voltage RF MEMS. IEEE Trans Microw Theory Tech 51(1):259–270

    Article  Google Scholar 

  • Persano A, Cola A, De Angelis G, Taurino A, Siciliano P, Quaranta F (2011) Capacitive RF MEMS switches with tantalum-based materials. J Microelectromech Syst 20(2):365–370

    Article  Google Scholar 

  • Philippine MA, Zareie H, Sigmund O, Rebeiz GM, Kenny TW (2013) Experimental validation of topology optimization for RF MEMS capacitive switch design. J Microelectromech Syst 22(6):1296–1309

    Article  Google Scholar 

  • Puyal V, Dragomirescu D, Villeneuve C, Ruan J, Pons P, Plana R (2009) Frequency scalable model for MEMS capacitive shunt switches at millimeter-wave frequencies. IEEE Trans Microw Theory Tech 57(11):2824–2833

    Article  Google Scholar 

  • Ramadoss R, Lee S, Lee YC, Bright VM, Gupta KC (2003) Fabrication, assembly, and testing of RF MEMS capacitive switches using flexible printed circuit technology. IEEE Trans Adv Packag 26(3):248–254

    Article  Google Scholar 

  • Rebeiz GM, Muldavin JB (2001) RF MEMS switches and switch circuits. IEEE Microw Mag 2:59–71

    Article  Google Scholar 

  • Rizk JB, Rebeiz GM (2003) W-Band CPW RF MEMS circuits on quartz substrates. IEEE Trans Microw Theory Tech 51(7):1857–1862

    Article  Google Scholar 

  • Saias D, Robert P, Boret S, Billard C, Bouche G, Belot D, Ancey P (2003) An above IC MEMS RF Switch. IEEE J Solid State Circuits 38(12):2318–2324

    Article  Google Scholar 

  • Sharma P, Perruisseau-Carrier J, Moldovan C, Ionescu AM (2014) Electromagnetic performance of RF NEMS graphene capacitive switches. IEEE Trans Nanotechnol. https://doi.org/10.1109/TNANO.2013.2290945

    Article  Google Scholar 

  • Sharma U, Kumar M, Sharma R, Saha T, Jain KK, Dutta S, Sharma EK (2017) Fabrication process induced changes in scattering parameters of meander type RFMEMS shunt switch. Microsyst Technol 12:5561–5570. https://doi.org/10.1007/s00542-017-3314-z

    Article  Google Scholar 

  • Shekhar S, Vinoy KJ, Suresh GKA (2017) Surface-micromachined capacitive RF switches with low actuation voltage and steady contact. J Micro Electro Mech Syst 26:1–11. https://doi.org/10.1109/jmems.2017.2688519

    Article  Google Scholar 

  • Stefanini R, Chatras M, Blondy P, Rebeiz GM (2011) Miniature MEMS switches for RF applications. J Microelectromech Syst 20(6):1324–1335

    Article  Google Scholar 

  • Wang J, Bielen J, Salm C, Krijnen G, Schmitz J (2016) On the small-signal capacitance of RF MEMS switches at very low frequencies. J Electron Devices Soc 4(6):1

    Article  Google Scholar 

  • Yang H-H, Han C-H, Choi S-J, Choi D-H, Yoon J-B (2015a) Signal power-insensitive analog MEMS tunable capacitor by immobilizing the movable plates. J Microelectromech Syst. https://doi.org/10.1109/JMEMS.2015.2420121

    Article  Google Scholar 

  • Yang H-H, Han C-H, Choi S-J, Choi D-H, Yoon J-B (2015b) Signal power-insensitive analog MEMS tunable capacitor by immobilizing the movable plates. J Microelectromech Syst. https://doi.org/10.1109/JMEMS.2015.2420121

    Article  Google Scholar 

  • Zhang S, Su W, Zaghloul M, Thibeault B (2008) Wideband CMOS compatible capacitive MEMS switch for RF applications. IEEE Microw Wirel Compon Lett 18(9):599–601

    Article  Google Scholar 

  • Zhang N, Mei L, Wang C, Deng Z, Yang J, Guo Q (2017) A switchable band pass filter employing RF MEMS switches and open-ring resonators. IEEE Trans Electron Devices 64(8):1–7

    Google Scholar 

  • Zohur A, Mopidevi H, RodrigoM D, Unlu L, Jofre L, Cetiner BA (2013) RF MEMS reconfigurable two-band antenna. IEEE Antennas Wirel Propag Lett 12:72–75

    Article  Google Scholar 

Download references

Acknowledgements

This Research was performed using the facilities at CeNSE, Indian Institute of Science, Bangalore, Funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Narayana Thalluri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thalluri, L.N., Guha, K., Srinivasa Rao, K. et al. Perforated serpentine membrane with AlN as dielectric material shunt capacitive RF MEMS switch fabrication and characterization. Microsyst Technol 26, 2029–2041 (2020). https://doi.org/10.1007/s00542-020-04755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04755-3

Navigation