Skip to main content
Log in

Impact of stress effect on triple material gate step-FinFET with DC and AC analysis

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Step-FinFET is an improvisation in various electrical characteristics with a modified mechanism. The gate length 20 nm, 15 nm, 20 nm has allowed an acceptable driving current and considerable power consumption which longer the battery life. The study consist of electron density, electron velocity, mobility, electric field, and surface potential to relate the improved device performance. The major variation of drain current due to stress effect, tunneling, saturation factor, and minority factor has been investigated. This paper analyzes the parameters like transconductance (Gm), Drain conductance (gd), input capacitance (Cgg), cut off frequency (fT), power consumption, etc., for verifying the RF and analog application. Various short channel effect (SCE) also studied in terms of threshold voltage (Vth), sub-threshold swing (SS), drain induced barrier lowering (DIBL) and On/Off ratio are investigated with different gate length and drain bias. As a result the minimum values of threshold voltage, SS and DIBL calculated for gate length of 15 nm are 0.2426 V, 69 mV/dec, 14.6 mV/V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chen CW, Chung CT, Luo GL, Chien CH (2012) Body-tied germanium FinFETs directly on a silicon substrate. IEEE Electron Device Lett 33(12):1678–1680

    Article  Google Scholar 

  • Choi YK et al (2001) Sub-20 nm CMOS FinFET technologies. Tech. Dig.—Int Electron Devices Meet, pp 421–424

  • Darbandy G et al (2013) Temperature dependent compact modeling of gate tunneling leakage current in double gate MOSFETs. Solid State Electron 81:124–129

    Article  Google Scholar 

  • Das RR, Maity S, Muchahary D, Bhunia CT (2017) Temperature dependent study of Fin-FET drain current through optimization of controlling gate parameters and dielectric material. Superlattices Microstruct 103:262–269

    Article  Google Scholar 

  • Das RR, Maity S, Choudhury A, Chakraborty A, Sahu PP, Bhunia CT (2018) Temperature-dependent short-channel parameters of FinFETs. J Comput Electron 17:1001–1012

    Article  Google Scholar 

  • Eng YC et al (2018) Importance of Δ VDIBLSS/(Ion/IOff) in evaluating the performance of n-channel bulk FinFET devices. IEEE J Electron Devices Soc 6(1):207–213

    Article  Google Scholar 

  • Frank DJ, Dennard RH, Nowak E, Solomon PM, Taur Y, Wong HSP (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE 89(3):259–287

    Article  Google Scholar 

  • Hatta SWM, Soin N, Rahman SHA, Wahab YA, Hussin H (2014) Effects of the fin width variation on the performance of 16 nm FinFETs with round fin corners and tapered fin shape. IEEE Int Conf Semicond Electron Proc, ICSE, pp 533–536

    Google Scholar 

  • Hobbs CC et al (2004) Fermi-level pinning at the polysilicon/metal oxide interface—part I. IEEE Trans Electron Devices 51(6):971–977

    Article  Google Scholar 

  • Hutin L et al (2010) GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current. IEEE Electron Device Lett 31(3):234–236

    Article  Google Scholar 

  • Jaju V (2004) Silicon-on-insulator technology, pp 1–12

  • Kavalieros J et al (2006) Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering. In: Dig. Tech. Pap. - Symp. VLSI Technol., vol. 00, no. c, pp 50–51

  • Kumar V, Gupta R, Preet R, Singh P, Vaid R (2016) Performance analysis of double gate n-FinFET Using high-k dielectric materials. Int J Innov Res Sci Eng Technol 5(7):13242–13249

    Google Scholar 

  • Li Y, Hwang CH, Li TY, Han MH (2010) Process-variation effect, metal-gate work-function fluctuation, and random-dopant fluctuation in emerging CMOS technologies. IEEE Trans Electron Devices 57(2):437–447

    Article  Google Scholar 

  • Li C, Zhuang Y, Zhang L (2012) Simulation study on FinFET with tri-material gate. In: 2012 IEEE Int. Conf. Electron Devices Solid State Circuit, EDSSC 2012, pp 1–3

  • Liu C, Zheng F, Sun Y, Li X, Shi Y (2017) Highly flexible SRAM cells based on novel tri-independent-gate FinFET. Superlattices Microstruct 110:330–338

    Article  Google Scholar 

  • Maity NP, Maity R, Maity S, Baishya S (2019a) A new surface potential and drain current model of dual material gate short channel metal oxide semiconductor field effect transistor in sub-threshold regime: application to high-k material HfO2. J Nanoelectron Optoelectron 14(6):868–876

    Article  Google Scholar 

  • Maity NP, Maity R, Maity S (2019b) Comparative analysis of the quantum FinFET and trigate FinFET based on modeling and simulation. J Comput Electron 18:492–499

    Article  Google Scholar 

  • Mehrad M, Orouji AA (2010) Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans Device Mater Reliab 10(2):271–275

    Article  Google Scholar 

  • Mohapatra SK, Pradhan KP, Sahu PK, Kumar MR (2014) The performance measure of GS-DG MOSFET: an impact of metal gate work function. Adv Nat Sci Nanosci Nanotechnol 5(2):025002

    Article  Google Scholar 

  • Mustafa M, Bhat TA, Beigh MR (2013) Threshold voltage sensitivity to metal gate work function based performance evaluation of double-gate n-FinFET structures for LSTP technology. World J Nano Sci Eng 03(01):17–22

    Article  Google Scholar 

  • Nawaz SM, Dutta S, Mallik A, Member S (2015) Comparison of gate-metal work function variability between Ge and Si p-Channel FinFETs, pp 1–6

  • Orouji AA, Rahimian M (2012) Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr Appl Phys 12(5):1366–1371

    Article  Google Scholar 

  • Ritzenthaler R, Lime F, Faynot O, Cristoloveanu S, Iñiguez B (2011) 3D analytical modelling of subthreshold characteristics in vertical Multiple-gate FinFET transistors. Solid State Electron 65–66(1):94–102

    Article  Google Scholar 

  • Sachid AB, Manoj CR, Sharma DK, Rao VR (2008) Gate fringe-induced barrier lowering in underlap FinFET structures and its optimization. IEEE Electron Device Lett 29(1):128–130

    Article  Google Scholar 

  • Singh NK, Maity S, Bhunia CT (2016) Effect of carrier number in density of states and quantum capacitance of with and without disorder GNR-FET on drain current. Superlattices Microstruct 100:458–467

    Article  Google Scholar 

  • Synopsys Inc. (2009) Sentaurus device user guide—v.K-2015.06, no. June, p. 2009

  • Vardi A, Del Alamo JA (2016) Sub-10-nm Fin-width self-aligned InGaAs FinFETs. IEEE Electron Device Lett 37(9):1104–1107

    Article  Google Scholar 

  • Wu K, Ding WW, Chiang MH (2013) Performance advantage and energy saving of triangular-shaped FinFETs. Int Conf Simul Semicond Process Devices, SISPAD, pp 143–146

    Google Scholar 

  • Yang Y, Jha NK (2013) FinPrin: analysis and optimization of FinFET logic circuits under PVT variations. Proc IEEE Int Conf VLSI Des 22(12):350–355

    Google Scholar 

  • Yeo YC, King TJ, Hu C (2003) MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans Electron Devices 50(4):1027–1035

    Article  Google Scholar 

  • Ytterdal T, Cheng Y, Fjeldly TA (2003) MOSFET device physics and operation 1.1 introduction

Download references

Acknowledgements

We would like to acknowledge National Institute of Technology Agartala and NIT Silchar for logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Maity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R.R., Chowdhury, A., Chakraborty, A. et al. Impact of stress effect on triple material gate step-FinFET with DC and AC analysis. Microsyst Technol 26, 1813–1821 (2020). https://doi.org/10.1007/s00542-019-04727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04727-2

Navigation