Skip to main content

Advertisement

Log in

Study of the methane flow influence in the micro-tribology behavior of DLC coatings deposited by PECVD: a Raman analysis

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This paper presents a Raman spectroscopy study of the influence of methane flow on the micro-tribological behavior of diamond-like carbon coatings deposited with an industrial plasma-enhanced chemical vapor deposition system. Results have shown a direct relationship between the methane flow and thickness of the coatings. The analysis of the Raman spectra and deposition parameters allowed establishing the influence of H content with the methane flow, the disorder level and estimation of the sp3 fraction on the carbon coatings. The micro-tribology tests showed a strong dependence of the wear resistance and hardness with Raman parameters. The coating deposited at 72-sccm methane flow presented a thickness of 1.7 µm and a sp3 fraction of 0.33. This sp3 fraction gave rise to a hardness of 24 GPa and an excellent wear resistance of 3.3 × 10–6 mm3 N−1 mm−1 for this DLC coating. Wear tests showed a swelling in the wear profiles on this coating, which was associated with the occurrence of a re-hybridization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kalin M, Velkavrh I, Vižintin J, Ožbolt L (2008) Review of boundary lubrication mechanisms of DLC coatings used in mechanical applications. Meccanica 43(6):623–637. https://doi.org/10.1007/s11012-008-9149-z

    Article  Google Scholar 

  2. Bewilogua K, Hofmann D (2014) History of diamond-like carbon films—from first experiments to worldwide applications. Surf Coatings Technol 242:214–225. https://doi.org/10.1016/j.surfcoat.2014.01.031

    Article  CAS  Google Scholar 

  3. Hauert R (2004) An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol Int 37(11–12):991–1003. https://doi.org/10.1016/j.triboint.2004.07.017(SPEC. ISS.)

    Article  CAS  Google Scholar 

  4. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R Rep 37(4–6):129–281. https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  5. Shi J, Xia T, Wang C, Yuan K, Zhang J (2018) Ultra-low friction mechanism of highly sp3-hybridized amorphous carbon controlled by interfacial molecule adsorption. Phys Chem Chem Phys 20(35):22445–22454. https://doi.org/10.1039/c8cp00859k

    Article  CAS  Google Scholar 

  6. Cui WG, Lai QB, Zhang L, Wang FM (2010) Quantitative measurements of sp3 content in DLC films with Raman spectroscopy. Surf Coatings Technol 205(7):1995–1999. https://doi.org/10.1016/j.surfcoat.2010.08.093

    Article  CAS  Google Scholar 

  7. Yoshikawa M et al (1995) Raman scattering from nanometer-sized diamond. Appl Phys Lett 67(1995):694. https://doi.org/10.1063/1.115206

    Article  CAS  Google Scholar 

  8. Tamor MA, Vassell WC (1994) Raman ‘fingerprinting’ of amorphous carbon films. J Appl Phys 76(6):3823–3830. https://doi.org/10.1063/1.357385

    Article  CAS  Google Scholar 

  9. Beeman D, Silverman J, Lynds R, Anderson MR (1984) Modeling studies of amorphous carbon. Phys Rev B 30(2):870–875. https://doi.org/10.1103/PhysRevB.30.870

    Article  CAS  Google Scholar 

  10. Santra TS, Bhattacharyya TK, Tseng FG, Barik TK (2012) Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD. AIP Adv 2(022132):1–10. https://doi.org/10.1063/1.4721654

    Article  CAS  Google Scholar 

  11. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc A Math Phys Eng Sci 362(1824):2477–2512. https://doi.org/10.1098/rsta.2004.1452

    Article  CAS  Google Scholar 

  12. Meng WJ, Gillispie BA (1998) Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J Appl Phys 84(8):4314–4321. https://doi.org/10.1063/1.368650

    Article  CAS  Google Scholar 

  13. Rose F et al (2014) Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing. J Appl Phys 116(12):123516. https://doi.org/10.1063/1.4896838

    Article  CAS  Google Scholar 

  14. Lee K-R, Baik Y-J, Yong Eun K (1994) “Precursor gas effect on the structure and properties of diamond-like carbon films. Diam Relat Mater 3:1230–1234. https://doi.org/10.1016/0925-9635(94)90126-0

    Article  CAS  Google Scholar 

  15. Grill A, Patel V (1993) Stresses in diamond-like carbon films. Diam Relat Mater 2(12):1519–1524. https://doi.org/10.1016/0925-9635(93)90023-U

    Article  CAS  Google Scholar 

  16. Wöckel J, Dzur B, Emmerlich J, Müller M, Rath S, Spreemann D (2015) Influence of the precursor gas on the process and layer properties of DLC films. In: 22nd international symposium plasma chemistry, pp 4–7

  17. Robertson J (2011) Plasma deposition of diamond-like carbon. Jpn J Appl Phys. https://doi.org/10.1143/JJAP.50.01AF01

    Article  Google Scholar 

  18. Wagner J, Wild C, Pohl F, Koidl P (1986) Optical studies of hydrogenated amorphous carbon plasma deposition. Appl Phys Lett 48(2):106–108. https://doi.org/10.1063/1.96967

    Article  CAS  Google Scholar 

  19. Wild C, Wagner J, Koidl P (1987) Process monitoring of aC: H plasma deposition. J Vac Sci Technol A Vacuum Surf Film 5(4):2227–2230. https://doi.org/10.1116/1.574962

    Article  CAS  Google Scholar 

  20. Kim J, Lee C (2003) Dependence of the physical properties DLC films by PECVD on the Ar gas addition. Korean Phys Soc 42(February):956–960

    Google Scholar 

  21. Hodkiewicz J (2010) Characterizing carbon materials with raman spectroscopy—application note. Thermo Fish Sci. https://doi.org/10.1088/0022-3727/46/12/122001

    Article  Google Scholar 

  22. Ferrari AC, Robertson J (1999) Interpretation of Raman spectra of disordered and amorphous carbon A. Phys Rev B 61(20):14095–14107. https://doi.org/10.1007/BF02543692

    Article  Google Scholar 

  23. Gilkes KWR et al (2000) Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy. J Appl Phys 87(10):7283–7289. https://doi.org/10.1063/1.372981

    Article  CAS  Google Scholar 

  24. Pang H, Wang X, Zhang G, Chen H, Lv G, Yang S (2010) Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy. Appl Surf Sci 256(21):6403–6407. https://doi.org/10.1016/j.apsusc.2010.04.025

    Article  CAS  Google Scholar 

  25. Oliver WC, Pharr GM (2011) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  26. Kashani H, HeydarzadehSohi M, Kaypour H (2000) Microstructural and physical properties of titanium nitride coatings produced by CVD process. Mater Sci Eng A 286(2):324–330. https://doi.org/10.1016/S0921-5093(00)00744-9

    Article  Google Scholar 

  27. Ong YY, Chen BT, Tay FEH, Iliescu C (2006) Process analysis and optimization on PECVD amorphous silicon on glass substrate. J Phys Conf Ser 34(1):812–817. https://doi.org/10.1088/1742-6596/34/1/134

    Article  CAS  Google Scholar 

  28. Ali M, Ürgen M (2011) Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl Surf Sci 257(20):8420–8426. https://doi.org/10.1016/j.apsusc.2011.04.097

    Article  CAS  Google Scholar 

  29. Viana GA, Motta EF, Da Costa MEHM, Freire FL, Marques FC (2010) Diamond-like carbon deposited by plasma technique as a function of methane flow rate. Diam Relat Mater 19(7–9):756–759. https://doi.org/10.1016/j.diamond.2010.01.043

    Article  CAS  Google Scholar 

  30. Sherman A (1987) Chemical vapor deposition for microelectronics, principles, technology and applications, 1st edn. Noyes Publications, Palo Alto

    Google Scholar 

  31. Guo ZY, Li ZX (2003) Size effect on microscale single-phase flow and heat transfer. Int J Heat Mass Transf 46(1):149–159. https://doi.org/10.1016/S0017-9310(02)00209-0

    Article  Google Scholar 

  32. Malandrino G (2009) Overview of chemical vapour deposition. In: Jones CA, Hitchman ML (eds) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, pp 1–2

  33. Ravi N, Bukhovets VL, Varshavskaya IG, Sundararajan G (2007) Deposition of diamond-like carbon films on aluminium substrates by RF-PECVD technique: influence of process parameters. Diam Relat Mater 16(1):90–97. https://doi.org/10.1016/j.diamond.2006.04.001

    Article  CAS  Google Scholar 

  34. Pardanaud C, Cartry G, Lajaunie L, Arenal R (2019) Investigating the possible origin of raman bands in defective sp2/sp3 carbons below 900 cm1: phonon density of states or double resonance mechanism at play? Carbon Res 5(79):1–12. https://doi.org/10.3390/c5040079

    Article  CAS  Google Scholar 

  35. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B 72(085401):1–14. https://doi.org/10.1103/PhysRevB.72.085401

    Article  CAS  Google Scholar 

  36. Klein MV (1975) Electronic Raman Scattering. In: Cardona M (ed) Light scattering in solids, no. topics, vol 8. Springer, New York, p 147

  37. Robertson J (1994) The deposition mechanism of diamond-like a-C and a-C " H. Diam Relat Mater 3:361–368. https://doi.org/10.1016/0925-9635(94)90186-4

    Article  CAS  Google Scholar 

  38. Modabberasl A, Kameli P, Ranjbar M, Salamati H, Ashiri R (2015) Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field. Carbon N Y 94:485–493. https://doi.org/10.1016/j.carbon.2015.06.081

    Article  CAS  Google Scholar 

  39. Rivera-Tello CD, Broitman E, Flores-Ruiz FJ, Jiménez O, Flores M (2016) Mechanical properties and tribological behavior at micro and macro-scale of WC/WCN/W hierarchical multilayer coatings. Tribol Int 101:194–203. https://doi.org/10.1016/j.triboint.2016.04.017

    Article  CAS  Google Scholar 

  40. Diliegros-Godines CJ, Flores-Ruiz FJ, Castanedo-Pérez R, Torres-Delgado G, Espinoza-Beltrán FJ, Broitman E (2014) Mechanical and tribological properties of CdO + SnO2 thin films prepared by sol–gel. J Sol Gel Sci Technol 74(1):114–120. https://doi.org/10.1007/s10971-014-3584-1

    Article  CAS  Google Scholar 

  41. Flores-Ruiz FJ et al (2018) Micro-tribological performance of fullerene-like carbon and carbon-nitride surfaces. Tribol Int 128(January):104–112. https://doi.org/10.1016/j.triboint.2018.07.009

    Article  CAS  Google Scholar 

  42. Kunze T et al (2014) Wear, plasticity, and rehybridization in tetrahedral amorphous carbon. Tribol Lett 53(1):119–126. https://doi.org/10.1007/s11249-013-0250-7

    Article  CAS  Google Scholar 

  43. Zeng Q, Eryilmaz O, Erdemir A (2011) Analysis of plastic deformation in diamond like carbon films-steel substrate system with tribological tests. Thin Solid Films 519(10):3203–3212. https://doi.org/10.1016/j.tsf.2011.01.102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was possible, thanks to the economic support of the CONACYT with project number 240721: “ForteCarbono.” FJFR acknowledge the support from FOINS-CONACYT Project 2016-01-2488, and the VIEP-BUAP-2020 Project.

Funding

This research was possible, thanks to the economic support of the national council of science and technology of México (CONACYT).

Author information

Authors and Affiliations

Authors

Contributions

As the corresponding author, I CDRT, hereby confirm on behalf of all authors that: All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to César Daniel Rivera-Tello.

Ethics declarations

Conflict of interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Tello, C.D., Flores-Ruiz, F.J., Flores, M. et al. Study of the methane flow influence in the micro-tribology behavior of DLC coatings deposited by PECVD: a Raman analysis. Carbon Lett. 31, 47–56 (2021). https://doi.org/10.1007/s42823-020-00148-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00148-8

Keywords

Navigation