Skip to main content

Advertisement

Log in

Effect of Leaching and Fungal Attacks During Storage on Chemical Properties of Raw and Torrefied Biomasses

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Coffee husk, eucalyptus, and pine residues were torrefied at 290 °C in a screw reactor, during 5, 10, 15 or 20 min. The effects of feedstock type and torrefaction process parameters (holding time) on their energy characteristics were investigated. Raw and torrefied biomasses were then submitted successively to leaching and to white and brown rot fungi, to mimic storage conditions. Mass loss after leaching step, water content and weight loss due to fungal deterioration after 2, 4, 8, 12, 16 weeks were recorded. The chemical composition and high heating value (HHV) of the torrefied samples were measured to determine the alterations compared to raw biomass during their storage. Increasing torrefaction residence time improves the decay resistance of the biomasses. Variation of carbon content (%wt., dry basis) and HHV (kJ/kg, dry basis) were observed during native and torrefied biomasses fungal degradations. Carbon contents and HHV values of raw and torrefied biomasses decreased during Trametes versicolor exposure [49.65% > C > 44.07% and 19.71 kJ/kg > HHV > 17.19 kJ/kg, results from results from all tests combined.], whereas they increased during exposure to Coniophora puteana [46.15% < C < 52.70% and 17.43 kJ/kg < HHV < 20.74 kJ/kg]. Severe torrefaction is therefore a good way to improve coffee husk, eucalyptus, and pine energy properties while limiting loss of their energy properties during storage.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PINE:

Pinus Sp. biomass sample

EUCA:

Eucalyptus Spp. biomass sample

CH:

Coffee husks (Coffea Arabica L.) biomass sample

CH-HT-5:

Coffee husks—heat treated at 290 °C—during 5 min (given for example, the same indexing is used for the different biomass and torrefaction residence time).

CH-Ref:

Coffee husks (Coffea Arabica L.) reference (raw biomass) sample (given for example, the same indexing is used for the different biomass reference).

TV:

Trametes versicolor Fungi (white rot)

CP:

Coniophora puteana Fungi (brown rot)

CH-HT-5 (TV):

Coffee husks—heat treated at 290 °C—during 5 min and exposed to Trametes versicolor fungi (given for example, the same indexing is used for the different biomass, torrefaction residence time and fungi exposures)

MLtt :

Mass loss of the sample due to torrefaction process (in %, dry basis)

Ext.:

Extractives content of the sample (in %, dry basis)

ML leach :

Mass loss of the sample due to leaching process (in %, dry basis)

Water Content:

Water content of the sample due to fungal exposure (in %, wet basis)

WL:

Weight loss of the sample due to fungal degradation (in %, dry basis)

C:

Carbon content of the sample (in %, dry basis)

H:

Hydrogen content of the sample (in %, dry basis)

N:

Nitrogen content of the sample (in %, dry basis)

H/C:

Hydrogen/Carbon molar ratio

HHV0 :

Higher heating value at constant volume of the dry (moisture-free) sample (in kJ/kg, dry basis)

References

  1. Vakkilainen, E., Kuparinen, K., Heinimo, J.: Large industrial users of energy biomass. Sustain. Int. Bioenergy Trade 40, 28–36 (2013)

    Google Scholar 

  2. Rousset, P., Aguiar, C., Volle, G., Anacleto, J., De Souza, M.: Torrefaction of Babassu: a potential utilization pathway. BioRessources 8(1), 358–370 (2013)

    Google Scholar 

  3. Stape, L.J., Binkley, D., Ryan, M.G., Fonseca, S., Loos, R.A., Takahashi, E.N., et al.: The Brazil eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. Ecol. Manage. (2010). https://doi.org/10.1016/j.foreco.2010.01.012

    Article  Google Scholar 

  4. Indústria Brasileira de Árvores—IBA : Report 2017, Brazil. p 80. (2017)

  5. Figueiró, C.G., Vital, B.R., Carneiro, A.C.O., Simões da Silva, C.M., Magalhães, M.A., Fialho, L.F.: Energy valorization of woody biomass by torrefaction treatment: a brazilian experimental study. Maderas.-Cienc. Tecnol. (2019). https://doi.org/10.4067/S0718-221X2019005XXXXXX. (In press)

    Article  Google Scholar 

  6. García, C.A., Pena, A., Betancourt, R., Cardona, C.A.: Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: coffee cut-stems case. J. Environ. Manage. (2017). https://doi.org/10.1016/j.jenvman.2017.04.029

    Article  Google Scholar 

  7. Paula, L.E.R., Trugilho, P.F., Napoli, A., Bianchi, M.L.: Characterization of residues from plant biomass for use in energy generation. Cerne, Lavras 17(2), 237–246 (2011)

    Article  Google Scholar 

  8. Kymäläinen, M., Mäkelä, M.R., Hildén, K., Kukkonen, J.: Fungal colonisation and moisture uptake of torrefied wood, charcoal, and thermally treated pellets during storage. Eur. J. Wood Prod. (2015). https://doi.org/10.1007/s00107-015-0950-9

    Article  Google Scholar 

  9. Batidzirai, B., Mignot, A.P.R., Schakel, W.B., Junginger, H.M., Faaij, A.P.C.: Biomass torrefaction technology: techno-economic status and future prospects. Energy (2013). https://doi.org/10.1016/j.energy.2013.09.035

    Article  Google Scholar 

  10. Candelier, K., Thevenon, M.F., Petrissans, A., Dumarçay, S., Gérardin, P., Petrissans, M.: Control of wood thermal treatment and its effects on decay resistance: a review. Ann. For. Sci. (2016). https://doi.org/10.1007/s13595-016-0541-x

    Article  Google Scholar 

  11. Uslu, A., Faaij, A.P.C., Bergman, P.C.A.: Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy (2008). https://doi.org/10.1016/j.energy.2008.03.007

    Article  Google Scholar 

  12. Van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass. Bioenerg. (2011). https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  Google Scholar 

  13. Kymäläinen, M., Havimo, M., Keriö, M., Kemell, S., Solio, J.: Biological degradation of torrefied wood and charcoal. Biomass. Bioenerg. (2014). https://doi.org/10.1016/j.biombioe.2014.10.009

    Article  Google Scholar 

  14. de Magalhães, M.A., Carneiro, C.O., Vital, B.R., Simões da Silva, C.M., Santos Costa, E.V., Trugilho, P.F., : Chemical properties of pellets of pinus sp. torrefied in a screw type reactor. Floresta (2018). https://doi.org/10.5380/rf.v48i4.52766

    Article  Google Scholar 

  15. TAPPI 204 cm-97: Solvent extractives of wood and pulp. Chemical Properties Committee of the Process and Product Quality Division TAPPI (2007)

  16. Pereira, B.L.C., Carneiro, A.C.O., Carvalho, A.M.M.L., Colodette, J.L., Oliveira, A.C., Fontes, M.P.F.: Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8(3), 4574–4592 (2013)

    Article  Google Scholar 

  17. NF X 41-568: Wood preservatives—laboratory method for obtaining samples for analysis to measure losses by leaching into water or synthetic sea water. AFNOR (2014)

  18. XP CEN/TS 15083-1: Durability of wood and wood-based materials—determination of the natural durability of solid wood to lignivorous fungi—Test methods—Part 1: basidiomycetes. European Committee for Standardization (2006)

  19. Salman, S., Thévenon, M.F., Pétrissans, A., Dumarçay, S., Candelier, K., Gérardin, P.: Improvement of the durability of heat-treated wood against termites. Maderas. Cienc. Tecnol. (2017). https://doi.org/10.4067/S0718-221X2017005000027

    Article  Google Scholar 

  20. British Standards—European Normalization—BS EN 15104: solid biofuels. Determination of total content of carbon, hydrogen and nitrogen. Instrumental methods, p 18, (2011)

  21. European Comity for Standardization—CEN/TS 14918: Solid bio fuels—method for the determination of calorific value (2005)

  22. Hofman, J.I.E.: Hypergeometric distribution, in biostatistics for medical and biomedical practitioners. Academic Press, Cambridge. (2015). https://doi.org/10.1016/C2014-0-02732-3. ISBN 978-0-12-802387-7

  23. Poletto, M.: Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas. Cienc. Tecnol. (2016). https://doi.org/10.4067/S0718-221X2016005000039

    Article  Google Scholar 

  24. Tsai, W.T., Liu, S.C., Hsieh, C.H.: Preparation and fuel properties of biochars from the pyrolisis of exhausted coffee residue. J. Anal. Appl. Pyrol. (2012). https://doi.org/10.1016/j.jaap.2011.09.010

    Article  Google Scholar 

  25. Alves de Macedo, L., Commandré, J.M., Rousset, P., Valette, J., Pétrissans, M.: Influence of potassium carbonate addition on the condensable species released during wood torrefaction. Fuel Process. Technol. (2018). https://doi.org/10.1016/j.fuproc.2017.10.012

    Article  Google Scholar 

  26. Tumuluru, J.S., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D.: A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. (2011). https://doi.org/10.1089/ind.2011.7.384

    Article  Google Scholar 

  27. Chen, Y., Yang, H., Yang, Q., Hao, H., Zhu, B., Chen, H.: Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation. Biores. Technol. (2014). https://doi.org/10.1016/j.biortech.2013.12.088

    Article  Google Scholar 

  28. Yang, W., Shimanouchi, T., Iwamura, M., Takahashi, Y., Mano, R., Takashima, K., Tanifuji, T., Kimura, Y.: Elevating the fuel properties of Humulus lupulus, Plumeria alba and Calophyllum inophyllum L. through wet torrefaction. Fuel (2015). https://doi.org/10.1016/j.fuel.2015.01.005

    Article  Google Scholar 

  29. Gouvea, B.M., Torres, C., Franca, A.S., Oliveira, L.S., Oliveira, E.S.: Feasibility of ethanol production from coffee husks. Biotechnol. Lett. (2009). https://doi.org/10.1007/s10529-009-0023-4

    Article  Google Scholar 

  30. Meija-Feldmane, A.: Leachates of thermally modified pine (Pinus sylvestris L.) Wood. Rural Sustain. Res. (2015). https://doi.org/10.1515/plua-2015-0010

    Article  Google Scholar 

  31. Brito, J.O., Silva, F.G., Leão, M.M., Almeida, G.: Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Biol. Technol. (2008). https://doi.org/10.1016/j.biortech.2008.03.069

    Article  Google Scholar 

  32. Jenkins, B.M., Baxter, L.L., Miles Jr., T.R., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. (1998). https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  33. Elaieb, M.T., Ayed, S.B., Dumarçay, S., De Freitas Homen De Faria, B., Thévenon, M.F., Gérardin, P., Candelier, K.: Natural durability of four Tunisian Eucalyptus spp and their respective compositions in extractives. Holzforschung (2019). https://doi.org/10.1515/hf-2019-0090

    Article  Google Scholar 

  34. Zhang, Y., Ghaly, A.E., Li, B.: Availability and physical properties of residues from major agricultural crops for energy conversion through thermochemical processes. Am. J. Agric. Biol. Sci. (2012). https://doi.org/10.3844/ajabssp.2012.312.321

    Article  Google Scholar 

  35. Moura, M.J., Ferreira, P.J., Figueiredo, M.M.: The use of mercury intrusion porosimetry to the characterization of eucalyptus wood, pulp and paper. IberoAmerican Congress on pulp and paper Research (2002)

  36. Usta, I.: Comparative study of wood density by specific amount of void volume (porosity). Turk. J. Agric. For. 27, 1–6 (2003)

    Google Scholar 

  37. Supramono, D., Devina, Y.M., Tristantini, D.: Effect of heating rate of torrefaction of sugarcane bagasse on its physical characteristics. Int. J. Technol. (2015). https://doi.org/10.14716/ijtech.v6i7.1771

    Article  Google Scholar 

  38. Tjierdsma, B., Boostra, M., Pizzi, A., Tekely, P., Militz, H.: Two-steps heat-treated timber: molecular-level reasons for wood performance improvement. Holz Roh Werkstoff 56, 149–153 (1998)

    Article  Google Scholar 

  39. EN 350: Durability of wood and wood-based products—Testing and classification of the durability to biological agents of wood and wood-based materials (2016)

  40. Elaieb, M.T., Candelier, K., Pétrissans, A., Dumarçay, S., Gérardin, P., Pétrissans, M.: Heat treatment of Tunisian soft wood species: effect on the durability, chemical modifications and mechanical properties. Maderas. Cienc. Tecnol. (2015). https://doi.org/10.4067/S0718-221X2015005000061

    Article  Google Scholar 

  41. Rytioja, J., Hildén, K., Yuzon, J., Hatakka, A., de Vries, R.P., Mäkelä, M.R.: Plant polysaccharide degrading enzymes from basidiomycetes. Microbiol. Mol. Biol. Rev. (2014). https://doi.org/10.1128/MMBR.00035-14

    Article  Google Scholar 

  42. Huang, C., Han, L., Yang, Z., Liu, X.: Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manage. (2009). https://doi.org/10.1016/j.wasman.2008.11.027

    Article  Google Scholar 

  43. Tillman, D.A.: Wood as an energy resource. Academic Press, New York (1978)

    Google Scholar 

  44. Therasme, O., Eisenbies, M.H., Volk, T.A.: Overhead Protection increases fuel quality and natural drying of leaf-on woody biomass storage piles. Forests (2016). https://doi.org/10.3390/f10050390

    Article  Google Scholar 

  45. Krigstin, S., Wetzel, S.: A review of mechanisms responsible for changes to stored woody biomass fuels. Fuel (2016). https://doi.org/10.1016/j.fuel.2016.02.014

    Article  Google Scholar 

  46. Pari, L., Brambilla, M., Bisaglia, C., Del Giudice, A., Croce, S., Salerno, M., Gallucci, F.: Poplar wood chip storage: Effect of particle size and breathable covering on drying dynamics and biofuel quality. Biomass Bioenergy (2015). https://doi.org/10.1016/j.biombioe.2015.07.001

    Article  Google Scholar 

  47. Lenz, H., Idler, C., Hartung, E., Pecenka, R.: Open-air storage of fine and coarse wood chips of poplar from short rotation coppice in covered piles. Biomass Bioenergy (2015). https://doi.org/10.1016/j.biombioe.2015.09.018

    Article  Google Scholar 

  48. Brand, M.A., De Muñiz, G.I.B., Quirino, W.F., Brito, J.O.: Storage as a tool to improve wood fuel quality. Biomass Bioenergy (2011). https://doi.org/10.1016/j.biombioe.2011.02.005

    Article  Google Scholar 

  49. Barontini, M., Scarfone, A., Spinelli, R., Gallucci, F., Santangelo, E., Acampora, A., Jirjis, R., Civitarese, V., Pari, L.: Storage dynamics and fuel quality of poplar chips. Biomass Bioenergy (2014). https://doi.org/10.1016/j.biombioe.2014.01.022

    Article  Google Scholar 

  50. Candelier, K., Hannouz, S., Thévenon, M.F., Guibal, D., Gérardin, P., Pétrissans, M., Collet, R.: Resistance of thermally modified Ash (Fraxinus excelsior L) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termites. Eur. J. Wood Wood Prod. (2017). https://doi.org/10.1007/s00107-016-1126-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Council for Scientific and Technological Development (CNPq) for the financial support granted to Bruno De Freitas Homem De Faria allowing him to carry out this PhD in collaboration with BioWooEB-CIRAD Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kévin Candelier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Freitas Homem De Faria, B., Lanvin, C., Valette, J. et al. Effect of Leaching and Fungal Attacks During Storage on Chemical Properties of Raw and Torrefied Biomasses. Waste Biomass Valor 12, 1447–1463 (2021). https://doi.org/10.1007/s12649-020-01081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01081-7

Keywords

Navigation