Skip to main content

Advertisement

Log in

Dimethyloxalyl Glycine Regulates the HIF-1 Signaling Pathway in Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal and multidirectional differentiation capabilities. Dimethyloxalyl glycine (DMOG) mobilizes MSCs, and the hypoxia inducible factor-1 (HIF-1) signaling pathway plays an important role in MSC mobilization. We aimed to investigate the effect of DMOG on the HIF-1 pathway in MSCs. Rats were treated with DMOG, and the numbers of peripheral blood MSCs (PB-MSCs) and bone marrow MSCs (BM-MSCs) were detected by the Colony-forming unit fibroblastic (CFU-F) method. The growth curve, cell cycle and migration ability of PB-MSCs and BM-MSCs were detected by CCK-8, Flow cytometry and Transwell assays. Western blotting and real-time qPCR were used to detect the expression of the HIF-1 pathway. The number of bone marrow microvessels was detected by immunohistochemistry. DMOG significantly increased the numbers of PB-MSCs and BM-MSCs (P < 0.05). Further, the MSCs in peripheral blood and bone marrow still had the ability to proliferate and migrate after mobilization by DMOG. The expression levels of HIF-1α, stromal cell-derived factor-1α (SDF-1α) and vascular endothelial growth factor (VEGF) in MSCs were significantly regulated by DMOG (P < 0.05). The number of bone marrow microvessels decreased after the VEGF/VEGFR signaling pathway was blocked by SU5416 (P < 0.05). Therefore, these findings demonstrated that DMOG regulates the HIF-1α signaling pathway and promotes biological effects in MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu, K., Xiao, J., Zheng, K., Feng, X., Zhang, J., Song, D., et al. (2018). Mir-21/stat3 signal is involved in odontoblast differentiation of human dental pulp stem cells mediated by tnf-α. Cellular Reprogramming, 20(2), 107.

    Article  CAS  PubMed  Google Scholar 

  2. Lo, W. J., Lin, C. L., Chang, Y. C., Bai, L. Y., Lin, C. Y., Liang, J. A., et al. (2018). Total body irradiation tremendously impair the proliferation, differentiation and chromosomal integrity of bone marrow-derived mesenchymal stromal stem cells. Annals of Hematology, 97(4),697-707.

    Article  CAS  PubMed  Google Scholar 

  3. Gimble, J. M., Zvonic, S., Floyd, Z. E., Kassem, M., & Nuttall, M. E. (2006). Playing with bone and fat. Journal of Cellular Biochemistry, 98(2), 251.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, L., Cai, X., Zhang, S., Karperien, M., & Lin, Y. (2013). Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: Perspectives from stem cell biology and molecular medicine. Journal of Cellular Physiology, 228(5), 938–944.

    Article  CAS  PubMed  Google Scholar 

  5. Aubin, J.E. (2008). Chapter 4 - Osteoclast Biology: Regulation of Formation and Function. Principles of Bone Biology, 85-107.

  6. Moroni, L., & Fornasari, P. M. (2013). Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. Journal of Cellular Physiology, 228(4), 680–687.

    Article  CAS  PubMed  Google Scholar 

  7. Yagi, H., Sotogutierrez, A., Parekkadan, B., Kitagawa, Y., Tompkins, R. G., Kobayashi, N., et al. (2010). Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplantation, 19(6), 667–679.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Levesque, J.P., Winkler, I.G., Larsen, S.R., & Rasko, J.E. (2007). Mobilization of bone marrow-derived progenitors. Handb Exp Pharmacol: Springer Berlin Heidelberg, 3–36.

  9. Link, D. (2010). Stem cells on the move. Nature Medicine, 16(10), 1073–1074.

    Article  CAS  PubMed  Google Scholar 

  10. Hoggatt, J., Speth, J. M., & Pelus, L. M. (2013). Concise review: sowing the seeds of a fruitful harvest: Hematopoietic stem cell mobilization. Stem Cells, 31(12), 2599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, W., Yu, Q., & Liu, L. (2013). Effect of prolylhydroxylase inhibitor on mobilization of mesenchymal stem cells in mice. Journal of Zhejiang Chinese Medical University, 37(12), 1371–1376.

    CAS  Google Scholar 

  12. Hu, S., Yu, Q., Liu, L., & Ge, T. (2015). Mechanism of hif-1 signaling pathway in mediating mscs mobilization with dmog. Chinese Journal of Comparative Medicine, 25(1), 9–14.

    Google Scholar 

  13. Liu, L., Yu, Q., Lin, J., Lai, X., Cao, W., Du, K., et al. (2011). Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells and Development, 20(11), 1961–1971.

    Article  CAS  PubMed  Google Scholar 

  14. Hou, P., Kuo, C. Y., Cheng, C. T., Liou, J. P., Ann, D. K., & Chen, Q. (2014). Intermediary metabolite precursor dimethyl-2-ketoglutarate stabilizes hypoxia-inducible factor-1α by inhibiting prolyl-4-hydroxylase phd2. PLoS One, 9(11), e113865.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Voulgarelis, M., & Tsichlis, P. N. (2016). Proline hydroxylation linked to akt activation. Science, 353(6302), 870.

    Article  CAS  PubMed  Google Scholar 

  16. Cai, X., Yuan, Y., Liao, Z., Xing, K., Zhu, C., Xu, Y., et al. (2017). Α-ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through phd3/adrb2 pathway. FASEB Journal, 32(1), 488.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, M., Sun, X., Ma, L., Jin, L., Zhang, W., Xiao, M., et al. (2017). SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways. Scientific Reports, 7, 40161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arakura, M., Lee, S. Y., Takahara, S., et al. (2017). Altered expression of SDF-1 and CXCR4 during fracture healing in diabetes mellitus. International Orthopaedics, 41(6), 1211–1217.

    Article  PubMed  Google Scholar 

  19. Ghadge, S. K., Messner, M., Van, P. T., Doppelhammer, M., Petry, A., Görlach, A., et al. (2017). Prolyl-hydroxylase inhibition induces SDF-1 associated with increased cxcr4+/cd11b+ subpopulations and cardiac repair. Journal of Molecular Medicine, 95(8), 825–837.

  20. Liu, H., Xue, W., Ge, G., Luo, X., Li, Y., Xiang, H., et al. (2010). Hypoxic preconditioning advances cxcr4 and cxcr7 expression by activating hif-1α in mscs. Biochemical & Biophysical Research Communications, 401(4), 509.

    Article  CAS  Google Scholar 

  21. Niyaz, M., Gürpınar, Ö. A., Oktar, G. L., Günaydın, S., Onur, M. A., Özsin, K. K., et al. (2015). Effects of vegf and mscs on vascular regeneration in a trauma model in rats. Wound Repair and Regeneration, 23(2), 262.

    Article  PubMed  Google Scholar 

  22. Fong, G. H. (2019). Regulation of angiogenesis by oxygen sensing mechanisms. Journal of Molecular Medicine, 87(6), 549.

    Article  Google Scholar 

  23. Pitchford, S. C., Furze, R. C., Jones, C. P., Wengner, A. M., & Rankin, S. M. (2009). Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell, 4(1), 62.

    Article  CAS  PubMed  Google Scholar 

  24. Shin, D. H., Kim, J. H., Jung, Y. J., et al. (2009). Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Letters, 255(1), 107–116.

    Article  Google Scholar 

  25. Na, J. I., Na, J. Y., Choi, W. Y., et al. (2015). The HIF-1 inhibitor YC-1 decreases reactive astrocyte formation in a rodent ischemia model. American Journal of Translational Research, 7(4), 751–760.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X., Liu, C., Wu, L., et al. (2016). Potent ameliorating effect of hypoxia-inducible factor 1α (HIF-1α) antagonist YC-1 on combined allergic rhinitis and asthma syndrome (CARAS) in rats. European Journal of Pharmacology, 788, 343–350.

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., & Oupický, D. (2014). Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor. Biomaterials., 35(21), 5572–5579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, E. H., Lee, H., Jeong, Y. K., et al. (2016). Mechanisms of SU5416, an inhibitor of vascular endothelial growth factor receptor, as a radiosensitizer for colon cancer cells. Oncology Reports, 36(2), 763–770.

    Article  CAS  PubMed  Google Scholar 

  29. Lund, T. C., Tolar, J., & Orchard, P. J. (2008). Granulocyte colony-stimulating factor mobilized CFU-F can be found in the peripheral blood but have limited expansion potential. Haematologica, 93(6), 908–912.

    Article  CAS  PubMed  Google Scholar 

  30. Golan, K., Vagima, Y., Ludin, A., Itkin, T., & Lapidot, T. (2012). S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood, 119(11), 2478–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hatzistergos, K. E., Saur, D., Seidler, B., Balkan, W., Breton, M., Valasaki, K., et al. (2016). Stimulatory effects of mscs on ckit+ cardiac stem cells are mediated by sdf1/cxcr4 and scf/ckit signaling pathways. Circulation Research, 119(8), 921. https://doi.org/10.1161/CIRCRESAHA.116.309281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, J., Crawford, R., Chen, C., & Xiao, Y. (2013). The key regulatory roles of the pi3k/akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Engineering. Part B, Reviews, 19(6), 516–528.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, G. D., Liu, Y. X., Wang, X., Zhang, Y. L., & Xue, F. (2017). The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells. Oncotarget, 8(7), 11629–11640.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harms, K. M., Lu, L., & Anna, C. L. (2010). Murine neural stem/progenitor cells protect neurons against ischemia by hif-1α–regulated vegf signaling. PLoS One, 5(3), e9767.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, J., Lai, L., Liu, S., Zhou, C., Wu, C., Huang, M., et al. (2016). Targeting HIF-1α and VEGF by lentivirus-mediated RNA interference reduces liver tumor cells migration and invasion under hypoxic conditions. Neoplasma, 63(6), 934–940.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, F., Du, J., & Wang, J. (2017). Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells. Molecular and Cellular Biochemistry, 428(1–2), 171–178.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Q., Chang, Q., Cox, R. A., Gong, X., & Gould, L. J. (2008). Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. Journal of Investigative Dermatology, 128(8), 2102.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, L. X., Lu, H., Luo, Y., Date, T., Belanger, A. J., Vincent, K. A., et al. (2002). Stabilization of vascular endothelial growth factor mrna by hypoxia-inducible factor 1. Biochemical & Biophysical Research Communications, 291(4), 908–914.

    Article  CAS  Google Scholar 

  39. Lee, J. C., Tae, H. J., Kim, I. H., Cho, J. H., Lee, T. K., Park, J. H., et al. (2016). Roles of HIF-1α, VEGF, and NF-κB in ischemic preconditioning-mediated neuroprotection of hippocampal CA1 pyramidal neurons against a subsequent transient cerebral ischemia. Molecular Neurobiology, 54(9), 6984–6998.

    Article  PubMed  Google Scholar 

  40. Gerber, H. P., Condorelli, F., Park, J., & Ferrara, N. (1997). Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes flt-1, but not flk-1/kdr, is up-regulated by hypoxia[J]. Journal of Biological Chemistry, 272(38), 23659.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31570994) and Natural Science Foundation of Zhejiang Province, China (Grant No. LY15C100001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Yu.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Ge, T., Zhou, L. et al. Dimethyloxalyl Glycine Regulates the HIF-1 Signaling Pathway in Mesenchymal Stem Cells. Stem Cell Rev and Rep 16, 702–710 (2020). https://doi.org/10.1007/s12015-019-09947-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09947-7

Keywords

Navigation