Skip to main content

Advertisement

Log in

Recent Progress in Engineering Mesenchymal Stem Cell Differentiation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Due to the ability to differentiate into variety of cell types, mesenchymal stem cells (MSCs) hold promise as source in cell-based therapy for treating injured tissue and degenerative diseases. The potential use of MSCs to replace or repair damaged tissues may depend on the efficient differentiation protocols to derive specialized cells without any negative side effects. Identification of appropriate cues that support the lineage-specific differentiation of stem cells is critical for tissue healing and cellular therapy. Recently, a number of stimuli have been utilized to direct the differentiation of stem cells. Biochemical stimuli such as small molecule, growth factor and miRNA have been traditionally used to regulate the fate of stem cells. In recent years, many studies have reported that biophysical stimuli including cyclic mechanical strain, fluid shear stress, microgravity, electrical stimulation, matrix stiffness and topography can also be sensed by stem cells through mechanical receptors, thus affecting the stem cell behaviors including their differentiation potential. In this paper, we review all the most recent literature on the application of biochemical and biophysical cues on regulating MSC differentiation. An extensive literature search was done using electronic database (Medline/Pubmed). Although there are still some challenges that need to be taken into consideration before translating these methods into clinics, biochemical and biophysical stimulation appears to be an attractive method to manipulate the lineage commitment of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Whitehouse, M. R., Howells, N. R., Parry, M. C., Austin, E., Kafienah, W., Brady, K., Goodship, A. E., Eldridge, J. D., Blom, A. W., & Hollander, A. P. (2017). Repair of torn avascular meniscal cartilage using undifferentiated autologous Mesenchymal stem cells: From in vitro optimization to a first-in-human study. Stem Cells Translational Medicine, 6(4), 1237–1248.

    CAS  PubMed  Google Scholar 

  2. Park, S., et al. (2016). Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. International Journal of Molecular Medicine, 37(5), 1209–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ariyanti, A. D., Zhang, J., Marcelina, O., Nugrahaningrum, D. A., Wang, G., Kasim, V., & Wu, S. (2019). Salidroside-pretreated Mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of Mesenchymal stem cells under hyperglycemia. Stem Cells Translational Medicine, 8(4), 404–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Burt, R. K., Balabanov, R., Burman, J., Sharrack, B., Snowden, J. A., Oliveira, M. C., Fagius, J., Rose, J., Nelson, F., Barreira, A. A., Carlson, K., Han, X., Moraes, D., Morgan, A., Quigley, K., Yaung, K., Buckley, R., Alldredge, C., Clendenan, A., Calvario, M. A., Henry, J., Jovanovic, B., & Helenowski, I. B. (2019). Effect of Nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: A randomized clinical trial. JAMA, 321(2), 165–174.

    PubMed  PubMed Central  Google Scholar 

  5. Park, Y. B., Ha, C. W., Lee, C. H., Yoon, Y. C., & Park, Y. G. (2017). Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived Mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Translational Medicine, 6(2), 613–621.

    CAS  PubMed  Google Scholar 

  6. Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y. S., Kassis, I., Vaknin-Dembinsky, A., Ben-Hur, T., Offen, D., Abramsky, O., Melamed, E., & Karussis, D. (2016). Safety and clinical effects of Mesenchymal stem cells secreting Neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurology, 73(3), 337–344.

    PubMed  Google Scholar 

  7. Mazzini, L., Gelati, M., Profico, D. C., Sorarù, G., Ferrari, D., Copetti, M., Muzi, G., Ricciolini, C., Carletti, S., Giorgi, C., Spera, C., Frondizi, D., Masiero, S., Stecco, A., Cisari, C., Bersano, E., de Marchi, F., Sarnelli, M. F., Querin, G., Cantello, R., Petruzzelli, F., Maglione, A., Zalfa, C., Binda, E., Visioli, A., Trombetta, D., Torres, B., Bernardini, L., Gaiani, A., Massara, M., Paolucci, S., Boulis, N. M., Vescovi, A. L., & ALS-NSCs Trial Study Group. (2019). Results from phase I clinical trial with Intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: A long-term outcome. Stem Cells Translational Medicine, 8(9), 887–897.

    PubMed  PubMed Central  Google Scholar 

  8. Menasche, P., et al. (2018). Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. Journal of the American College of Cardiology, 71(4), 429–438.

    PubMed  Google Scholar 

  9. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    CAS  Google Scholar 

  10. Zhang, B., Luo, Q., Deng, B., Morita, Y., Ju, Y., & Song, G. (2018). Construction of tendon replacement tissue based on collagen sponge and mesenchymal stem cells by coupled mechano-chemical induction and evaluation of its tendon repair abilities. Acta Biomaterialia, 74, 247–259.

    CAS  PubMed  Google Scholar 

  11. Poudineh, M., Wang, Z., Labib, M., Ahmadi, M., Zhang, L., Das, J., Ahmed, S., Angers, S., & Kelley, S. O. (2018). Three-dimensional nanostructured architectures enable efficient neural differentiation of Mesenchymal stem cells via Mechanotransduction. Nano Letters, 18(11), 7188–7193.

    CAS  PubMed  Google Scholar 

  12. Dos Santos, J. F., et al. (2019). Mesenchymal stem cells differentiate into keratinocytes and express epidermal kallikreins: Towards an in vitro model of human epidermis. Journal of Cellular Biochemistry, 120(8), 13141–13155.

    PubMed  Google Scholar 

  13. Sgodda, M., Aurich, H., Kleist, S., Aurich, I., König, S., Dollinger, M. M., Fleig, W. E., & Christ, B. (2007). Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Experimental Cell Research, 313(13), 2875–2886.

    CAS  PubMed  Google Scholar 

  14. Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J. G., Dollinger, M. M., Fleig, W. E., & Christ, B. (2009). Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut, 58(4), 570–581.

    CAS  PubMed  Google Scholar 

  15. Bhansali, S., Dutta, P., Kumar, V., Yadav, M. K., Jain, A., Mudaliar, S., Bhansali, S., Sharma, R. R., Jha, V., Marwaha, N., Khandelwal, N., Srinivasan, A., Sachdeva, N., Hawkins, M., & Bhansali, A. (2017). Efficacy of autologous bone marrow-derived Mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: A randomized. Placebo-Controlled Comparative Study. Stem Cells Dev, 26(7), 471–481.

    CAS  PubMed  Google Scholar 

  16. Sui, B., Hu, C., Zhang, X., Zhao, P., He, T., Zhou, C., Qiu, X., Chen, N., Zhao, X., & Jin, Y. (2016). Allogeneic Mesenchymal stem cell therapy promotes Osteoblastogenesis and prevents glucocorticoid-induced osteoporosis. Stem Cells Translational Medicine, 5(9), 1238–1246.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ezquer, F., Bahamonde, J., Huang, Y. L., & Ezquer, M. (2017). Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Research & Therapy, 8(1), 20.

    Google Scholar 

  18. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8(9), 726–736.

    CAS  PubMed  Google Scholar 

  19. Dominici, M., le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    CAS  Google Scholar 

  20. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., Fries, J. W. U., Tiemann, K., Bohlen, H., Hescheler, J., Welz, A., Bloch, W., Jacobsen, S. E. W., & Fleischmann, B. K. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.

    CAS  PubMed  Google Scholar 

  21. Yoon, Y. S., Park, J. S., Tkebuchava, T., Luedeman, C., & Losordo, D. W. (2004). Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation, 109(25), 3154–3157.

    PubMed  Google Scholar 

  22. Liao, J., et al. (2012). Transfer of bone-marrow-derived mesenchymal stem cells influences vascular remodeling and calcification after balloon injury in hyperlipidemic rats. Journal of Biomedicine & Biotechnology, 2012, 165296.

    Google Scholar 

  23. di Bonzo, L. V., Ferrero, I., Cravanzola, C., Mareschi, K., Rustichell, D., Novo, E., Sanavio, F., Cannito, S., Zamara, E., Bertero, M., Davit, A., Francica, S., Novelli, F., Colombatto, S., Fagioli, F., & Parola, M. (2008). Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: Engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 57(2), 223–231.

    PubMed  Google Scholar 

  24. Urrutia, D. N., Caviedes, P., Mardones, R., Minguell, J. J., Vega-Letter, A. M., & Jofre, C. M. (2019). Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PLoS One, 14(3), e0213032.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, E. Y., Lee, K. B., Yu, J., Lee, J. H., Kim, K. J., Han, K. W., Park, K. S., Lee, D. S., & Kim, M. K. (2014). Neuronal cell differentiation of mesenchymal stem cells originating from canine amniotic fluid. Human Cell, 27(2), 51–58.

    CAS  PubMed  Google Scholar 

  26. Feng, Y., Wang, J., Ling, S., Li, Z., Li, M., Li, Q., Ma, Z., & Yu, S. (2014). Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold. Neural Regeneration Research, 9(22), 1968–1978.

    PubMed  PubMed Central  Google Scholar 

  27. Alizadeh, R., Bagher, Z., Kamrava, S. K., Falah, M., Ghasemi Hamidabadi, H., Eskandarian Boroujeni, M., Mohammadi, F., Khodaverdi, S., Zare-Sadeghi, A., Olya, A., & Komeili, A. (2019). Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton's jelly and olfactory mucosa as sources of MSCs. Journal of Chemical Neuroanatomy, 96, 126–133.

    CAS  PubMed  Google Scholar 

  28. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180(4), 2581–2587.

    CAS  Google Scholar 

  29. Gnecchi, M., & Melo, L. G. (2009). Bone marrow-derived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods in Molecular Biology, 482, 281–294.

    CAS  PubMed  Google Scholar 

  30. Zuk, P. A., Zhu, M., Ashjian, P., de Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109(1), 235–242.

    CAS  PubMed  Google Scholar 

  32. Toma, J. G., McKenzie, I. A., Bagli, D., & Miller, F. D. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 23(6), 727–737.

    CAS  PubMed  Google Scholar 

  33. Perry, B. C., Zhou, D., Wu, X., Yang, F. C., Byers, M. A., Chu, T. M. G., Hockema, J. J., Woods, E. J., & Goebel, W. S. (2008). Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Engineering. Part C, Methods, 14(2), 149–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Seeberger, K. L., Eshpeter, A., & Korbutt, G. S. (2011). Isolation and culture of human multipotent stromal cells from the pancreas. Methods in Molecular Biology, 698, 123–140.

    CAS  PubMed  Google Scholar 

  35. Hatakeyama, A., et al. (2017). Isolation and characterization of synovial Mesenchymal stem cell derived from hip joints: A comparative analysis with a matched control knee group. Stem Cells International, 2017, 9312329.

    PubMed  PubMed Central  Google Scholar 

  36. da Silva Meirelles, L. (2008). A.I. Caplan, and N.B. Nardi, In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.

    PubMed  Google Scholar 

  37. Vezzani, B., Pierantozzi, E., & Sorrentino, V. (2018). Mesenchymal stem cells: From the perivascular environment to clinical applications. Histology and Histopathology, 33(12), 1235–1246.

    CAS  PubMed  Google Scholar 

  38. Yianni, V., & Sharpe, P. T. (2019). Perivascular-derived Mesenchymal stem cells. Journal of Dental Research, 98(10), 1066–1072.

    CAS  PubMed  Google Scholar 

  39. Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: A perspective from in vitro cultures to in vivo migration and niches. European Cells & Materials, 20, 121–133.

    CAS  Google Scholar 

  40. Murray, I. R., & Peault, B. (2015). Q&a: Mesenchymal stem cells - where do they come from and is it important? BMC Biology, 13, 99.

    PubMed  PubMed Central  Google Scholar 

  41. Xu, L., Liu, Y., Sun, Y., Wang, B., Xiong, Y., Lin, W., Wei, Q., Wang, H., He, W., Wang, B., & Li, G. (2017). Tissue source determines the differentiation potentials of mesenchymal stem cells: A comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Research & Therapy, 8(1), 275.

    Google Scholar 

  42. Hayashi, O., Katsube, Y., Hirose, M., Ohgushi, H., & Ito, H. (2008). Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcified Tissue International, 82(3), 238–247.

    CAS  PubMed  Google Scholar 

  43. Gaebel, R., Furlani, D., Sorg, H., Polchow, B., Frank, J., Bieback, K., Wang, W., Klopsch, C., Ong, L. L., Li, W., Ma, N., & Steinhoff, G. (2011). Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One, 6(2), e15652.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Komori, T. (2006). Regulation of osteoblast differentiation by transcription factors. Journal of Cellular Biochemistry, 99(5), 1233–1239.

    CAS  PubMed  Google Scholar 

  45. Nuttall, M. E., & Gimble, J. M. (2004). Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Current Opinion in Pharmacology, 4(3), 290–294.

    CAS  PubMed  Google Scholar 

  46. Zhuang, H., Zhang, X., Zhu, C., Tang, X., Yu, F., wei Shang, G., & Cai, X. (2016). Molecular mechanisms of PPAR-gamma governing MSC Osteogenic and Adipogenic differentiation. Current Stem Cell Research & Therapy, 11(3), 255–264.

    CAS  Google Scholar 

  47. Barter, M. J., Gomez, R., Hyatt, S., Cheung, K., Skelton, A. J., Xu, Y., Clark, I. M., & Young, D. A. (2017). The long non-coding RNA ROCR contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development, 144(24), 4510–4521.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shukunami, C., Takimoto, A., Nishizaki, Y., Yoshimoto, Y., Tanaka, S., Miura, S., Watanabe, H., Sakuma, T., Yamamoto, T., Kondoh, G., & Hiraki, Y. (2018). Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Scientific Reports, 8(1), 3155.

    PubMed  PubMed Central  Google Scholar 

  49. Alberton, P., Popov, C., Prägert, M., Kohler, J., Shukunami, C., Schieker, M., & Docheva, D. (2012). Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells and Development, 21(6), 846–858.

    CAS  PubMed  Google Scholar 

  50. Shoji, E., Woltjen, K., & Sakurai, H. (2016). Directed myogenic differentiation of human induced pluripotent stem cells. Methods in Molecular Biology, 1353, 89–99.

    CAS  PubMed  Google Scholar 

  51. Gang, E. J., et al. (2004). Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells, 22(4), 617–624.

    PubMed  Google Scholar 

  52. Qin, H., Zhao, A., & Fu, X. (2017). Small molecules for reprogramming and transdifferentiation. Cellular and Molecular Life Sciences, 74(19), 3553–3575.

    CAS  PubMed  Google Scholar 

  53. Ali, D., Alshammari, H., Vishnubalaji, R., Chalisserry, E. P., Hamam, R., Alfayez, M., Kassem, M., Aldahmash, A., & Alajez, N. M. (2017). CUDC-907 promotes bone marrow Adipocytic differentiation through inhibition of histone Deacetylase and regulation of cell cycle. Stem Cells and Development, 26(5), 353–362.

    CAS  PubMed  Google Scholar 

  54. Yang, J., et al. (2017). Inhibition of histone Methyltransferase, histone Deacetylase, and beta-catenin synergistically enhance the cardiac potential of bone marrow cells. Stem Cells International, 2017, 3464953.

    PubMed  PubMed Central  Google Scholar 

  55. Fonseca, S., et al. (2014). Molecular locks and keys: The role of small molecules in phytohormone research. Frontiers in Plant Science, 5, 709.

    PubMed  PubMed Central  Google Scholar 

  56. Qiu, X. M., et al. (2015). BSNXD modulates mesenchymal stem cell differentiation into osteoblasts in a postmenopausal osteoporotic mouse model. International Journal of Clinical and Experimental Pathology, 8(5), 4408–4417.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Casado-Diaz, A., et al. (2016). Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. The Journal of Nutritional Biochemistry, 32, 151–162.

    CAS  PubMed  Google Scholar 

  58. Caldarelli, I., Speranza, M. C., Bencivenga, D., Tramontano, A., Borgia, A., Pirozzi, A. V. A., Perrotta, S., Oliva, A., Della Ragione, F., & Borriello, A. (2015). Resveratrol mimics insulin activity in the adipogenic commitment of human bone marrow mesenchymal stromal cells. The International Journal of Biochemistry & Cell Biology, 60, 60–72.

    CAS  Google Scholar 

  59. Choi, Y., Yoon, D. S., Lee, K. M., Choi, S. M., Lee, M. H., Park, K. H., Han, S. H., & Lee, J. W. (2019). Enhancement of Mesenchymal stem cell-driven bone regeneration by resveratrol-mediated SOX2 regulation. Aging and Disease, 10(4), 818–833.

    PubMed  PubMed Central  Google Scholar 

  60. Wang, X., Ma, S., Yang, B., Huang, T., Meng, N., Xu, L., Xing, Q., Zhang, Y., Zhang, K., Li, Q., Zhang, T., Wu, J., Yang, G. L., Guan, F., & Wang, J. (2018). Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease. Behavioural Brain Research, 339, 297–304.

    CAS  PubMed  Google Scholar 

  61. Saely, C. H., Geiger, K., & Drexel, H. (2012). Brown versus white adipose tissue: A mini-review. Gerontology, 58(1), 15–23.

    PubMed  Google Scholar 

  62. Morganstein, D. L., Wu, P., Mane, M. R., Fisk, N. M., White, R., & Parker, M. G. (2010). Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: A role for ERRalpha in human UCP1 expression. Cell Research, 20(4), 434–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Valet, P., Tavernier, G., Castan-Laurell, I., Saulnier-Blache, J. S., & Langin, D. (2002). Understanding adipose tissue development from transgenic animal models. Journal of Lipid Research, 43(6), 835–860.

    CAS  PubMed  Google Scholar 

  64. Polak, P., Cybulski, N., Feige, J. N., Auwerx, J., Rüegg, M. A., & Hall, M. N. (2008). Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metabolism, 8(5), 399–410.

    CAS  PubMed  Google Scholar 

  65. Imran, K.M., Rahman, N., Yoon, D., Jeon, M., Lee, B. T., & Kim, Y. S. (2017). Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim Biophys Acta Mol Cell Biol Lipids, 1862(10 Pt A), 1110–1120.

  66. Imran, K. M., Yoon, D., & Kim, Y. S. (2018). A pivotal role of AMPK signaling in medicarpin-mediated formation of brown and beige. Biofactors, 44(2), 168–179.

    CAS  PubMed  Google Scholar 

  67. Mitchell, A. C., Briquez, P. S., Hubbell, J. A., & Cochran, J. R. (2016). Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 30, 1–12.

    CAS  PubMed  Google Scholar 

  68. Murakami, J., Ishii, M., Suehiro, F., Ishihata, K., Nakamura, N., & Nishimura, M. (2017). Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway. Biochemical and Biophysical Research Communications, 484(3), 710–718.

    CAS  PubMed  Google Scholar 

  69. Lu, Z., Lei, D., Jiang, T., Yang, L., Zheng, L., & Zhao, J. (2017). Nerve growth factor from Chinese cobra venom stimulates chondrogenic differentiation of mesenchymal stem cells. Cell Death & Disease, 8(5), e2801.

    CAS  Google Scholar 

  70. Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis, 1(1), 87–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yan, X., et al. (2018). BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) are more effective than wild-type BMSCs in healing fractures. Experimental and Therapeutic Medicine, 16(2), 1381–1388.

    PubMed  PubMed Central  Google Scholar 

  72. Chen, Y. C., & Yu, Y. H. (2018). The potential of brown adipogenesis and browning in porcine bone marrow-derived mesenchymal stem cells1. Journal of Animal Science, 96(9), 3635–3644.

    PubMed  PubMed Central  Google Scholar 

  73. Peng, X. B., Zhang, Y., Wang, Y. Q., He, Q., & Yu, Q. (2019). IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 120(4), 5570–5582.

    CAS  PubMed  Google Scholar 

  74. Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta, 1803(11), 1231–1243.

    CAS  PubMed  Google Scholar 

  75. Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews. Genetics, 11(9), 597–610.

    CAS  PubMed  Google Scholar 

  76. Choi, E., & Hwang, K. C. (2013). MicroRNAs as novel regulators of stem cell fate. World J Stem Cells, 5(4), 172–187.

    PubMed  PubMed Central  Google Scholar 

  77. Han, R., Kan, Q., Sun, Y., Wang, S., Zhang, G., Peng, T., & Jia, Y. (2012). MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neuroscience Letters, 515(2), 147–152.

    CAS  PubMed  Google Scholar 

  78. Tian, Y., Guo, R., Shi, B., Chen, L., Yang, L., & Fu, Q. (2016). MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression. Life Sciences, 148, 220–228.

    CAS  PubMed  Google Scholar 

  79. Hosaka, Y., Saito, T., Sugita, S., Hikata, T., Kobayashi, H., Fukai, A., Taniguchi, Y., Hirata, M., Akiyama, H., Chung, U. I., & Kawaguchi, H. (2013). Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1875–1880.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, S., Xu, Z., Shao, J., Fu, P., & Wu, H. (2019). MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnology, 19(1), 6.

    PubMed  PubMed Central  Google Scholar 

  81. Shi, L., Feng, L., Liu, Y., Duan, J. Q., Lin, W. P., Zhang, J. F., & Li, G. (2018). MicroRNA-218 promotes Osteogenic differentiation of Mesenchymal stem cells and accelerates bone fracture healing. Calcified Tissue International, 103(2), 227–236.

    CAS  PubMed  Google Scholar 

  82. Sun, Y., Xu, L., Huang, S., Hou, Y., Liu, Y., Chan, K. M., Pan, X. H., & Li, G. (2015). mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model. BioMed Research International, 2015, 412327.

  83. Debbi, L., Drori, S., & Tzlil, S. (2018). The influence of the timing of cyclic load application on cardiac cell contraction. Frontiers in Physiology, 9, 917.

    PubMed  PubMed Central  Google Scholar 

  84. Zhang, B., Luo, Q., Chen, Z., Sun, J., Xu, B., Ju, Y., & Song, G. (2015). Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Research, 14(2), 155–164.

    CAS  PubMed  Google Scholar 

  85. Yao, R., & Wong, J. Y. (2015). The effects of mechanical stimulation on controlling and maintaining marrow stromal cell differentiation into vascular smooth muscle cells. Journal of Biomechanical Engineering, 137(2), 020907.

    PubMed  Google Scholar 

  86. Chen, X., Yan, J., He, F., Zhong, D., Yang, H., Pei, M., & Luo, Z. P. (2018). Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radical Biology & Medicine, 126, 187–201.

    CAS  Google Scholar 

  87. Fernandes, D.C., et al., Chapter 7 - Hemodynamic Forces in the Endothelium: From Mechanotransduction to Implications on Development of Atherosclerosis, in Endothelium and Cardiovascular Diseases, P.L. Da Luz, et al., Editors. 2018, Academic Press. p. 85–95.

  88. Adamo, L., & Garcia-Cardena, G. (2011). Directed stem cell differentiation by fluid mechanical forces. Antioxidants & Redox Signaling, 15(5), 1463–1473.

    CAS  Google Scholar 

  89. Dong, J. D., Gu, Y. Q., Li, C. M., Wang, C. R., Feng, Z. G., Qiu, R. X., Chen, B., Li, J. X., Zhang, S. W., Wang, Z. G., & Zhang, J. (2009). Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacologica Sinica, 30(5), 530–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, Y., Jia, X., Bai, K., Gong, X., & Fan, Y. (2010). Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Archives of Medical Research, 41(7), 497–505.

    PubMed  Google Scholar 

  91. Lu, J., Fan, Y., Gong, X., Zhou, X., Yi, C., Zhang, Y., & Pan, J. (2016). The lineage specification of Mesenchymal stem cells is directed by the rate of fluid shear stress. Journal of Cellular Physiology, 231(8), 1752–1760.

    CAS  PubMed  Google Scholar 

  92. Yao, S., Liu, X., Yu, S., Wang, X., Zhang, S., Wu, Q., Sun, X., & Mao, H. (2016). Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. Nanoscale, 8(19), 10252–10265.

    CAS  PubMed  Google Scholar 

  93. Chu, G., Yuan, Z., Zhu, C., Zhou, P., Wang, H., Zhang, W., Cai, Y., Zhu, X., Yang, H., & Li, B. (2019). Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by yes-associated protein. Acta Biomaterialia, 92, 254–264.

    CAS  PubMed  Google Scholar 

  94. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    CAS  PubMed  Google Scholar 

  95. Olivares-Navarrete, R., Lee, E. M., Smith, K., Hyzy, S. L., Doroudi, M., Williams, J. K., Gall, K., Boyan, B. D., & Schwartz, Z. (2017). Substrate stiffness controls Osteoblastic and Chondrocytic differentiation of Mesenchymal stem cells without exogenous stimuli. PLoS One, 12(1), e0170312.

    PubMed  PubMed Central  Google Scholar 

  96. Shih, Y. R., et al. (2011). Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Journal of Bone and Mineral Research, 26(4), 730–738.

    CAS  PubMed  Google Scholar 

  97. Hu, Q., Liu, M., Chen, G., Xu, Z., & Lv, Y. (2018). Demineralized bone scaffolds with tunable matrix stiffness for efficient bone integration. ACS Applied Materials & Interfaces, 10(33), 27669–27680.

    CAS  Google Scholar 

  98. Choi, B., et al. (2018). Microenvironmental regulation of stem cell behavior through biochemical and biophysical stimulation. Advances in Experimental Medicine and Biology, 1064, 147–160.

    CAS  PubMed  Google Scholar 

  99. Wu, Y. N., Law, J. B. K., He, A. Y., Low, H. Y., Hui, J. H. P., Lim, C. T., Yang, Z., & Lee, E. H. (2014). Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation. Nanomedicine, 10(7), 1507–1516.

    CAS  PubMed  Google Scholar 

  100. Oh, S., Brammer, K. S., Li, Y. S. J., Teng, D., Engler, A. J., Chien, S., & Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2130–2135.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kang, S., Park, J. B., Lee, T. J., Ryu, S., Bhang, S. H., la, W. G., Noh, M. K., Hong, B. H., & Kim, B. S. (2015). Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon, 83, 162–172.

    CAS  Google Scholar 

  102. Cappellesso, R., Nicole, L., Guido, A., & Pizzol, D. (2015). Spaceflight osteoporosis: Current state and future perspective. Endocrine Regulations, 49(4), 231–239.

    CAS  PubMed  Google Scholar 

  103. Tamma, R., Colaianni, G., Camerino, C., di Benedetto, A., Greco, G., Strippoli, M., Vergari, R., Grano, A., Mancini, L., Mori, G., Colucci, S., Grano, M., & Zallone, A. (2009). Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. The FASEB Journal, 23(8), 2549–2554.

    CAS  PubMed  Google Scholar 

  104. Chen, Z., Luo, Q., Lin, C., & Song, G. (2015). Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Biochemical and Biophysical Research Communications, 468(1–2), 21–26.

    CAS  PubMed  Google Scholar 

  105. Chen, Z., Luo, Q., Lin, C., Kuang, D., & Song, G. (2016). Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Scientific Reports, 6, 30322.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, N., Wang, H., Chen, J., Zhang, X., Xie, J., Li, Z., Ma, J., Wang, W., & Wang, Z. (2014). The simulated microgravity enhances multipotential differentiation capacity of bone marrow mesenchymal stem cells. Cytotechnology, 66(1), 119–131.

    CAS  PubMed  Google Scholar 

  107. Xue, L., Li, Y., & Chen, J. (2017). Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Molecular Medicine Reports, 15(5), 3011–3018.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Luo, H., Zhu, B., Zhang, Y., & Jin, Y. (2015). Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Engineering. Part A, 21(1–2), 267–276.

    PubMed  Google Scholar 

  109. Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H., Ozawa, M., Ohyama-Goto, R., Kitamura, N., Kawano, M., Tan-Takeuchi, K., Ohtsuka, C., Miyawaki, A., Takashima, A., Ogawa, M., Toyama, Y., Okano, H., & Kondo, T. (2007). Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells, 25(3), 562–570.

    CAS  PubMed  Google Scholar 

  110. Du, J., et al. (2018). Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials, 181, 347–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ning, T., Guo, J., Zhang, K., Li, K., Zhang, J., Yang, Z., & Ge, Z. (2019). Nanosecond pulsed electric fields enhanced chondrogenic potential of mesenchymal stem cells via JNK/CREB-STAT3 signaling pathway. Stem Cell Research & Therapy, 10(1), 45.

    CAS  Google Scholar 

  112. Leppik, L., Zhihua, H., Mobini, S., Thottakkattumana Parameswaran, V., Eischen-Loges, M., Slavici, A., Helbing, J., Pindur, L., Oliveira, K. M. C., Bhavsar, M. B., Hudak, L., Henrich, D., & Barker, J. H. (2018). Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Scientific Reports, 8(1), 6307.

    PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y., Yan, J., Xu, H., Yang, Y., Li, W., Wu, H., & Liu, C. (2018). Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca(2+) and activating the FAK/rho GTPases signaling pathways in vitro. Stem Cell Research & Therapy, 9(1), 143.

    CAS  Google Scholar 

  114. Tsai, M. T., Li, W. J., Tuan, R. S., & Chang, W. H. (2009). Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research, 27(9), 1169–1174.

    PubMed  PubMed Central  Google Scholar 

  115. Yang, Y., Tao, C., Zhao, D., Li, F., Zhao, W., & Wu, H. (2010). EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics, 31(4), 277–285.

    CAS  PubMed  Google Scholar 

  116. Seong, Y., Moon, J., & Kim, J. (2014). Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Life Sciences, 102(1), 16–27.

    CAS  PubMed  Google Scholar 

  117. Mooney, E., Mackle, J. N., Blond, D. J. P., O'Cearbhaill, E., Shaw, G., Blau, W. J., Barry, F. P., Barron, V., & Murphy, J. M. (2012). The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 33(26), 6132–6139.

    CAS  PubMed  Google Scholar 

  118. Guo, W., Zhang, X., Yu, X., Wang, S., Qiu, J., Tang, W., Li, L., Liu, H., & Wang, Z. L. (2016). Self-powered electrical stimulation for enhancing neural differentiation of Mesenchymal stem cells on Graphene-poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano, 10(5), 5086–5095.

    CAS  PubMed  Google Scholar 

  119. Chen, C., Bai, X., Ding, Y., & Lee, I. S. (2019). Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res, 23, 25.

    PubMed  PubMed Central  Google Scholar 

  120. Park, J. S., Chu, J. S., Tsou, A. D., Diop, R., Tang, Z., Wang, A., & Li, S. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 32(16), 3921–3930.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, Y., Hong, Y., Xu, M., Ma, K., Fu, X., Zhang, M., & Wang, G. (2016). Role of keratinocyte growth factor in the differentiation of sweat gland-like cells from human umbilical cord-derived Mesenchymal stem cells. Stem Cells Translational Medicine, 5(1), 106–116.

    CAS  PubMed  Google Scholar 

  122. Wang, Y., Liu, Y., Fan, Z., Liu, D., Wang, F., & Zhou, Y. (2017). IGFBP2 enhances adipogenic differentiation potentials of mesenchymal stem cells from Wharton's jelly of the umbilical cord via JNK and Akt signaling pathways. PLoS One, 12(8), e0184182.

    PubMed  PubMed Central  Google Scholar 

  123. Ji, C., Liu, X., Xu, L., Yu, T., Dong, C., & Luo, J. (2017).  RUNX1 Plays an Important Role in Mediating BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells Line C3H10T1/2, Murine Multi-Lineage Cells Lines C2C12 and MEFs. International Journal of Molecular Sciences18(7), 1348.

  124. Pajoohesh, M., Naderi-Manesh, H., & Soleimani, M. (2016). MicroRNA-145-based differentiation of human mesenchymal stem cells to smooth muscle cells. Biotechnology Letters, 38(11), 1975–1981.

    CAS  PubMed  Google Scholar 

  125. Su, X., Liao, L., Shuai, Y., Jing, H., Liu, S., Zhou, H., Liu, Y., & Jin, Y. (2015). MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death & Disease, 6, e1851.

    CAS  Google Scholar 

  126. Huang, Y., Zheng, L., Gong, X., Jia, X., Song, W., Liu, M., & Fan, Y. (2012). Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PLoS One, 7(4), e34960.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee, J., Abdeen, A. A., Tang, X., Saif, T. A., & Kilian, K. A. (2016). Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomaterialia, 42, 46–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hwang, J. H., Byun, M. R., Kim, A. R., Kim, K. M., Cho, H. J., Lee, Y. H., Kim, J., Jeong, M. G., Hwang, E. S., & Hong, J. H. (2015). Extracellular matrix stiffness regulates Osteogenic differentiation through MAPK activation. PLoS One, 10(8), e0135519.

    PubMed  PubMed Central  Google Scholar 

  129. Sun, M., Chi, G., Xu, J., Tan, Y., Xu, J., Lv, S., Xu, Z., Xia, Y., Li, L., & Li, Y. (2018). Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha5. Stem Cell Research & Therapy, 9(1), 52.

    Google Scholar 

  130. Zhang, X., Nan, Y., Wang, H., Chen, J., Wang, N., Xie, J., Ma, J., & Wang, Z. (2013). Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften, 100(2), 125–133.

    CAS  PubMed  Google Scholar 

  131. Chen, J., Liu, R., Yang, Y., Li, J., Zhang, X., Li, J., Wang, Z., & Ma, J. (2011). The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neuroscience Letters, 505(2), 171–175.

    CAS  PubMed  Google Scholar 

  132. Yong, Y., Ming, Z. D., Feng, L., Chun, Z. W., & Hua, W. (2016). Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. Journal of Tissue Engineering and Regenerative Medicine, 10(10), E537–E545.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 11772073, 11832008 and 11532004), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA15014102.), Fundamental Research Funds for the Central Universities (2019CDXYSG0004), and the Program of Postgraduate Tutor Team of Chongqing Education Commission (2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanbin Song.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halim, A., Ariyanti, A.D., Luo, Q. et al. Recent Progress in Engineering Mesenchymal Stem Cell Differentiation. Stem Cell Rev and Rep 16, 661–674 (2020). https://doi.org/10.1007/s12015-020-09979-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09979-4

Keywords

Navigation